These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17215681)

  • 41. Non-linear development of postural control and strategy use in young children: a longitudinal study.
    Kirshenbaum N; Riach CL; Starkes JL
    Exp Brain Res; 2001 Oct; 140(4):420-31. PubMed ID: 11685395
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensorimotor adaptation of whole-body postural control.
    Shiller DM; Veilleux LN; Marois M; Ballaz L; Lemay M
    Neuroscience; 2017 Jul; 356():217-228. PubMed ID: 28549560
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Characteristics of the maintenance of the upright posture during additional contact with an external object on a moving or immobile platform].
    Kazennikov OV; Shlykov VIu; Levik IuS
    Fiziol Cheloveka; 2005; 31(1):59-65. PubMed ID: 15835762
    [No Abstract]   [Full Text] [Related]  

  • 44. Voluntary control of postural equilibrium patterns.
    Buchanan JJ; Horak FB
    Behav Brain Res; 2003 Aug; 143(2):121-40. PubMed ID: 12900039
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Whole body pointing movements in transient microgravity: preliminary results.
    Tagliabue M; Pedrocchi A; Gower V; Ferrigno G; Pozzo T
    J Gravit Physiol; 2004 Jul; 11(2):P39-40. PubMed ID: 16231449
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physiological mechanisms and assessment of motor disorders in Parkinson's disease.
    Steg G; Johnels B
    Adv Neurol; 1993; 60():358-65. PubMed ID: 8420153
    [No Abstract]   [Full Text] [Related]  

  • 47. CNS learns stable, accurate, and efficient movements using a simple algorithm.
    Franklin DW; Burdet E; Tee KP; Osu R; Chew CM; Milner TE; Kawato M
    J Neurosci; 2008 Oct; 28(44):11165-73. PubMed ID: 18971459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of the basal ganglia in balance control.
    Visser JE; Bloem BR
    Neural Plast; 2005; 12(2-3):161-74; discussion 263-72. PubMed ID: 16097484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dissociation between "where" and "how" judgements of one's own motor performance in a video-controlled reaching task.
    Boy F; Palluel-Germain R; Orliaguet JP; Coello Y
    Neurosci Lett; 2005 Sep; 386(1):52-7. PubMed ID: 15982810
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anticipatory control related to the upward propulsive force during the rising on tiptoe from an upright standing position.
    Ito T; Azuma T; Yamashita N
    Eur J Appl Physiol; 2004 Jun; 92(1-2):186-95. PubMed ID: 15045509
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping.
    Auyang AG; Yen JT; Chang YH
    Exp Brain Res; 2009 Jan; 192(2):253-64. PubMed ID: 18839158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Practice-related improvements in postural control during rapid arm movement in older adults: a preliminary study.
    Kubicki A; Petrement G; Bonnetblanc F; Ballay Y; Mourey F
    J Gerontol A Biol Sci Med Sci; 2012 Feb; 67(2):196-203. PubMed ID: 21948599
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationship between adaptation of motor control and cognition of environmental dynamics.
    Onishi K; Naito S; Obinata G; Hase K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4928-31. PubMed ID: 19163822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of kinesthetic haptic feedback on standing stability of young healthy subjects and stroke patients.
    Afzal MR; Byun HY; Oh MK; Yoon J
    J Neuroeng Rehabil; 2015 Mar; 12():27. PubMed ID: 25889581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visuomotor adaptation does not recalibrate kinesthetic sense of felt hand path.
    Wong T; Henriques DY
    J Neurophysiol; 2009 Feb; 101(2):614-23. PubMed ID: 19019980
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of repeated walking in a perturbing environment: a 4-day locomotor learning study.
    Blanchette A; Moffet H; Roy JS; Bouyer LJ
    J Neurophysiol; 2012 Jul; 108(1):275-84. PubMed ID: 22496521
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adaptation and vision change the relationship between muscle activity of the lower limbs and body movement during human balance perturbations.
    Patel M; Gomez S; Lush D; Fransson PA
    Clin Neurophysiol; 2009 Mar; 120(3):601-9. PubMed ID: 19136294
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Müller-Lyer illusion affects the planning and control of manual aiming movements.
    Meegan DV; Glazebrook CM; Dhillon VP; Tremblay L; Welsh TN; Elliott D
    Exp Brain Res; 2004 Mar; 155(1):37-47. PubMed ID: 15064883
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-component models of reaching: evidence from deafferentation in a Fitts' law task.
    Medina J; Jax SA; Coslett HB
    Neurosci Lett; 2009 Feb; 451(3):222-6. PubMed ID: 19150390
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparing for a motor perturbation: early implication of primary motor and somatosensory cortices.
    de Graaf JB; Frolov A; Fiocchi M; Nazarian B; Anton JL; Pailhous J; Bonnard M
    Hum Brain Mapp; 2009 Feb; 30(2):575-87. PubMed ID: 18172849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.