These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Carlson RP Bioinformatics; 2007 May; 23(10):1258-64. PubMed ID: 17344237 [TBL] [Abstract][Full Text] [Related]
3. Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants. Goryachev AB; Toh DJ; Lee T Biosystems; 2006; 83(2-3):178-87. PubMed ID: 16174549 [TBL] [Abstract][Full Text] [Related]
5. The effects of time delays in a phosphorylation-dephosphorylation pathway. Srividhya J; Gopinathan MS; Schnell S Biophys Chem; 2007 Feb; 125(2-3):286-97. PubMed ID: 17014949 [TBL] [Abstract][Full Text] [Related]
6. A data integration approach for cell cycle analysis oriented to model simulation in systems biology. Alfieri R; Merelli I; Mosca E; Milanesi L BMC Syst Biol; 2007 Aug; 1():35. PubMed ID: 17678529 [TBL] [Abstract][Full Text] [Related]
7. Generalized concept of minimal cut sets in biochemical networks. Klamt S Biosystems; 2006; 83(2-3):233-47. PubMed ID: 16303240 [TBL] [Abstract][Full Text] [Related]
8. Nested uncertainties in biochemical models. Schaber J; Liebermeister W; Klipp E IET Syst Biol; 2009 Jan; 3(1):1-9. PubMed ID: 19154080 [TBL] [Abstract][Full Text] [Related]
9. Methods of information geometry in computational system biology (consistency between chemical and biological evolution). Astakhov V Methods Mol Biol; 2009; 569():115-27. PubMed ID: 19623488 [TBL] [Abstract][Full Text] [Related]
10. Computing chemical organizations in biological networks. Centler F; Kaleta C; di Fenizio PS; Dittrich P Bioinformatics; 2008 Jul; 24(14):1611-8. PubMed ID: 18480100 [TBL] [Abstract][Full Text] [Related]
11. From molecular to biological structure and back. Bonchev D; Buck GA J Chem Inf Model; 2007; 47(3):909-17. PubMed ID: 17407281 [TBL] [Abstract][Full Text] [Related]
12. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Kim JI; Varner JD; Ramkrishna D Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908 [TBL] [Abstract][Full Text] [Related]
13. Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks. Nookaew I; Meechai A; Thammarongtham C; Laoteng K; Ruanglek V; Cheevadhanarak S; Nielsen J; Bhumiratana S Biotechnol Bioeng; 2007 Aug; 97(6):1535-49. PubMed ID: 17238207 [TBL] [Abstract][Full Text] [Related]
14. Understanding human metabolic physiology: a genome-to-systems approach. Mo ML; Palsson BØ Trends Biotechnol; 2009 Jan; 27(1):37-44. PubMed ID: 19010556 [TBL] [Abstract][Full Text] [Related]
15. Drug-efficacy depends on the inhibitor type and the target position in a metabolic network--a systematic study. Gerber S; Assmus H; Bakker B; Klipp E J Theor Biol; 2008 Jun; 252(3):442-55. PubMed ID: 17981303 [TBL] [Abstract][Full Text] [Related]
16. Network Analysis Tools: from biological networks to clusters and pathways. Brohée S; Faust K; Lima-Mendez G; Vanderstocken G; van Helden J Nat Protoc; 2008; 3(10):1616-29. PubMed ID: 18802442 [TBL] [Abstract][Full Text] [Related]