BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17216052)

  • 1. Control of macromolecular structure and function using covalently attached double-stranded DNA constraints.
    Silverman SK
    Mol Biosyst; 2007 Jan; 3(1):24-9. PubMed ID: 17216052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA constraints allow rational control of macromolecular conformation.
    Miduturu CV; Silverman SK
    J Am Chem Soc; 2005 Jul; 127(29):10144-5. PubMed ID: 16028906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray.
    Gagna CE; Lambert WC
    Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric control of ribozyme catalysis by using DNA constraints.
    Zelin E; Silverman SK
    Chembiochem; 2007 Nov; 8(16):1907-11. PubMed ID: 17876755
    [No Abstract]   [Full Text] [Related]  

  • 5. Macromolecular recognition.
    Deremble C; Lavery R
    Curr Opin Struct Biol; 2005 Apr; 15(2):171-5. PubMed ID: 15837175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic technique to generate large branched DNA complexes.
    Tosch P; Wälti C; Middelberg AP; Davies AG
    Biomacromolecules; 2006 Mar; 7(3):677-81. PubMed ID: 16529398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple motif for protein recognition in DNA secondary structures.
    Landt SG; Ramirez A; Daugherty MD; Frankel AD
    J Mol Biol; 2005 Sep; 351(5):982-94. PubMed ID: 16055152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermolecular and intramolecular readout mechanisms in protein-DNA recognition.
    Michael Gromiha M; Siebers JG; Selvaraj S; Kono H; Sarai A
    J Mol Biol; 2004 Mar; 337(2):285-94. PubMed ID: 15003447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA folding during transcription.
    Pan T; Sosnick T
    Annu Rev Biophys Biomol Struct; 2006; 35():161-75. PubMed ID: 16689632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The left-handed double helical nucleic acids.
    Brown BA; Rich A
    Acta Biochim Pol; 2001; 48(2):295-312. PubMed ID: 11732602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of DNA constraints that control macromolecular folding.
    Miduturu CV; Silverman SK
    Angew Chem Int Ed Engl; 2006 Mar; 45(12):1918-21. PubMed ID: 16485308
    [No Abstract]   [Full Text] [Related]  

  • 12. Macromolecular mimicry of nucleic acid and protein.
    Pedersen GN; Nyborg J; Clark BF
    IUBMB Life; 1999 Jul; 48(1):13-8. PubMed ID: 10791910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple molecular model for thermophilic adaptation of functional nucleic acids.
    Blose JM; Silverman SK; Bevilacqua PC
    Biochemistry; 2007 Apr; 46(14):4232-40. PubMed ID: 17361991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A knowledge-based potential function predicts the specificity and relative binding energy of RNA-binding proteins.
    Zheng S; Robertson TA; Varani G
    FEBS J; 2007 Dec; 274(24):6378-91. PubMed ID: 18005254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking cAMP-dependent allosteric control of protein kinase A through mechanical tension.
    Choi B; Zocchi G
    J Am Chem Soc; 2006 Jul; 128(26):8541-8. PubMed ID: 16802820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of IRF-3 bound to the PRDIII-I regulatory element of the human interferon-beta enhancer.
    Escalante CR; Nistal-Villán E; Shen L; García-Sastre A; Aggarwal AK
    Mol Cell; 2007 Jun; 26(5):703-16. PubMed ID: 17560375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular flexibility in protein-DNA interactions.
    Günther S; Rother K; Frömmel C
    Biosystems; 2006 Aug; 85(2):126-36. PubMed ID: 16488073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention of function in the DNA homolog of the RNA dopamine aptamer.
    Walsh R; DeRosa MC
    Biochem Biophys Res Commun; 2009 Oct; 388(4):732-5. PubMed ID: 19699181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Parallel" and "antiparallel tail-clamps" increase the efficiency of triplex formation with structured DNA and RNA targets.
    Nadal A; Eritja R; Esteve T; Pla M
    Chembiochem; 2005 Jun; 6(6):1034-42. PubMed ID: 15880676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleic acid based molecular devices.
    Krishnan Y; Simmel FC
    Angew Chem Int Ed Engl; 2011 Mar; 50(14):3124-56. PubMed ID: 21432950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.