BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 17216298)

  • 1. Transglucosylation of ascorbic acid to ascorbic acid 2-glucoside by a recombinant sucrose phosphorylase from Bifidobacterium longum.
    Kwon T; Kim CT; Lee JH
    Biotechnol Lett; 2007 Apr; 29(4):611-5. PubMed ID: 17216298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083.
    van den Broek LA; van Boxtel EL; Kievit RP; Verhoef R; Beldman G; Voragen AG
    Appl Microbiol Biotechnol; 2004 Aug; 65(2):219-27. PubMed ID: 14740189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and expression of sucrose phosphorylase gene from Bifidobacterium longum in E. coli and characterization of the recombinant enzyme.
    Kim M; Kwon T; Lee HJ; Kim KH; Chung DK; Ji GE; Byeon ES; Lee JH
    Biotechnol Lett; 2003 Aug; 25(15):1211-7. PubMed ID: 14514069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking a Fine Line with Sucrose Phosphorylase: Efficient Single-Step Biocatalytic Production of l-Ascorbic Acid 2-Glucoside from Sucrose.
    Gudiminchi RK; Nidetzky B
    Chembiochem; 2017 Jul; 18(14):1387-1390. PubMed ID: 28426168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of a Thermobacillus sucrose phosphorylase and its utility in enzymatic synthesis of 2-O-α-d-glucopyranosyl-l- ascorbic acid.
    Li Y; Li Z; He X; Chen L; Cheng Y; Jia H; Yan M; Chen K
    J Biotechnol; 2019 Nov; 305():27-34. PubMed ID: 31470069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid.
    Sugimoto K; Nomura K; Nishiura H; Ohdan K; Ohdan K; Hayashi H; Kuriki T
    J Biosci Bioeng; 2007 Jul; 104(1):22-9. PubMed ID: 17697979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization.
    Cerdobbel A; Desmet T; De Winter K; Maertens J; Soetaert W
    J Biotechnol; 2010 Oct; 150(1):125-30. PubMed ID: 20691225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Transglycosylation of L-ascorbic acid].
    Markosian AA; Abelian LA; Adamian MO; Akopian ZhI; Abelian VA
    Prikl Biokhim Mikrobiol; 2007; 43(1):42-6. PubMed ID: 17345857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoter engineering for efficient production of sucrose phosphorylase in Bacillus subtilis and its application in enzymatic synthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid.
    Gan T; Fang J; Wang Y; Liu K; Sang Y; Chen H; Lu Y; Zhu L; Chen X
    Enzyme Microb Technol; 2023 Sep; 169():110267. PubMed ID: 37321017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization.
    Kullin B; Abratt VR; Reid SJ
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):975-81. PubMed ID: 16523284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Process-Related Impurities and Corresponding Control Strategy in Biocatalytic Production of 2-
    Zhou Y; Lv X; Chen L; Zhang H; Zhu L; Lu Y; Chen X
    J Agric Food Chem; 2022 Apr; 70(16):5066-5076. PubMed ID: 35412325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of 2-O-D-glucopyranosyl-l-ascorbic acid from maltose by an engineered cyclodextrin glycosyltransferase from Paenibacillus macerans.
    Liu L; Han R; Shin HD; Li J; Du G; Chen J
    Carbohydr Res; 2013 Dec; 382():101-7. PubMed ID: 24239542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-molecule glucosylation by sucrose phosphorylase: structure-activity relationships for acceptor substrates revisited.
    Luley-Goedl C; Nidetzky B
    Carbohydr Res; 2010 Jul; 345(10):1492-6. PubMed ID: 20416864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular acyl migration and enzymatic hydrolysis of a novel monoacylated ascorbic acid derivative, 6-O-dodecanoyl-2-O-alpha-d-glucopyranosyl-L-ascorbic acid.
    Tai A; Mori T; Urushihara M; Ito H; Kawasaki D; Yamamoto I
    Bioorg Med Chem; 2010 Aug; 18(16):6179-83. PubMed ID: 20638286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoacylation of 2-O-alpha-D-glucopyranosyl-L-ascorbic acid by protease in N,N-dimethylformamide with low water content.
    Tai A; Mori T; Kimura Y; Ito H
    Carbohydr Res; 2010 Aug; 345(12):1658-62. PubMed ID: 20566192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current studies on the enzymatic preparation 2-O-α-d-glucopyranosyl-l-ascorbic acid with cyclodextrin glycosyltransferase.
    Tao X; Su L; Wu J
    Crit Rev Biotechnol; 2019 Mar; 39(2):249-257. PubMed ID: 30563366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Production of 2-O-α-D-Glucosyl Glycerol Catalyzed by an Engineered Sucrose Phosphorylase from Bifidobacterium longum.
    Lei J; Tang K; Zhang T; Li Y; Gao Z; Jia H
    Appl Biochem Biotechnol; 2022 Nov; 194(11):5274-5291. PubMed ID: 35731443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of a new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae beta-glycosidase.
    Park NY; Baek NI; Cha J; Lee SB; Auh JH; Park CS
    Carbohydr Res; 2005 May; 340(6):1089-96. PubMed ID: 15797124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of two alpha-glucosidases from Bifidobacterium adolescentis DSM20083.
    van den Broek LA; Struijs K; Verdoes JC; Beldman G; Voragen AG
    Appl Microbiol Biotechnol; 2003 Mar; 61(1):55-60. PubMed ID: 12658515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis.
    Cerdobbel A; De Winter K; Aerts D; Kuipers R; Joosten HJ; Soetaert W; Desmet T
    Protein Eng Des Sel; 2011 Nov; 24(11):829-34. PubMed ID: 21900303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.