These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17216365)

  • 1. A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms.
    Fatourechi M; Birch GE; Ward RK
    J Comput Neurosci; 2007 Aug; 23(1):21-37. PubMed ID: 17216365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-paced brain-computer interface system with a low false positive rate.
    Fatourechi M; Ward RK; Birch GE
    J Neural Eng; 2008 Mar; 5(1):9-23. PubMed ID: 18310807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a hybrid wavelet feature selection method in the design of a self-paced brain interface system.
    Fatourechi M; Birch GE; Ward RK
    J Neuroeng Rehabil; 2007 Apr; 4():11. PubMed ID: 17470288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How many people are able to operate an EEG-based brain-computer interface (BCI)?
    Guger C; Edlinger G; Harkam W; Niedermayer I; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):145-7. PubMed ID: 12899258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic user customization for improving the performance of a self-paced brain interface system.
    Fatourechi M; Bashashati A; Birch GE; Ward RK
    Med Biol Eng Comput; 2006 Dec; 44(12):1093-104. PubMed ID: 17111117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A self-paced and calibration-less SSVEP-based brain-computer interface speller.
    Cecotti H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):127-33. PubMed ID: 20071274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent studies in the design of a self-paced brain interface with low false positive rate.
    Fatourechi M; Ward RK; Birch GE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2944-9. PubMed ID: 17946537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.
    Chang HC; Lee PL; Lo MT; Lee IH; Yeh TK; Chang CY
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):305-12. PubMed ID: 22203724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining spatial filters for the classification of single-trial EEG in a finger movement task.
    Liao X; Yao D; Wu D; Li C
    IEEE Trans Biomed Eng; 2007 May; 54(5):821-31. PubMed ID: 17518278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system.
    Allison BZ; Pineda JA
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):110-3. PubMed ID: 12899248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An N200 speller integrating the spatial profile for the detection of the non-control state.
    Zhang D; Song H; Xu H; Wu W; Gao S; Hong B
    J Neural Eng; 2012 Apr; 9(2):026016. PubMed ID: 22414615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Externally cued inphase bimanual training enhances preparatory premotor activity.
    Smith AL; Staines WR
    Clin Neurophysiol; 2012 Sep; 123(9):1846-57. PubMed ID: 22401934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns.
    Kim Y; Ryu J; Kim KK; Took CC; Mandic DP; Park C
    Comput Intell Neurosci; 2016; 2016():1489692. PubMed ID: 27795702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A brain-computer interface using motion-onset visual evoked potential.
    Guo F; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Dec; 5(4):477-85. PubMed ID: 19015582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex and individual differences in induced and evoked EEG measures of action observation.
    Silas J; Levy JP; Nielsen MK; Slade L; Holmes A
    Neuropsychologia; 2010 Jul; 48(9):2417-26. PubMed ID: 20226800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification effects of real and imaginary movement selective attention tasks on a P300-based brain-computer interface.
    Salvaris M; Sepulveda F
    J Neural Eng; 2010 Oct; 7(5):056004. PubMed ID: 20811088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements.
    Frenkel-Toledo S; Bentin S; Perry A; Liebermann DG; Soroker N
    Brain Res; 2013 May; 1509():43-57. PubMed ID: 23500633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.