These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17216445)

  • 1. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus.
    de Vrije T; Mars AE; Budde MA; Lai MH; Dijkema C; de Waard P; Claassen PA
    Appl Microbiol Biotechnol; 2007 Apr; 74(6):1358-67. PubMed ID: 17216445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production.
    Munro SA; Zinder SH; Walker LP
    Biotechnol Prog; 2009; 25(4):1035-42. PubMed ID: 19551880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus.
    van Niel EW; Claassen PA; Stams AJ
    Biotechnol Bioeng; 2003 Feb; 81(3):255-62. PubMed ID: 12474247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.
    Koskinen PE; Beck SR; Orlygsson J; Puhakka JA
    Biotechnol Bioeng; 2008 Nov; 101(4):679-90. PubMed ID: 18500766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen production in alkalithermophilic conditions: Thermobrachium celere as a case study.
    Ciranna A; Santala V; Karp M
    Bioresour Technol; 2011 Sep; 102(18):8714-22. PubMed ID: 21333530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49.
    Liu BF; Ren NQ; Xing DF; Ding J; Zheng GX; Guo WQ; Xu JF; Xie GJ
    Bioresour Technol; 2009 May; 100(10):2719-23. PubMed ID: 19200719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous hydrogen production from glucose by using extreme thermophilic anaerobic microflora.
    Yokoyama H; Ohmori H; Waki M; Ogino A; Tanaka Y
    J Biosci Bioeng; 2009 Jan; 107(1):64-6. PubMed ID: 19147112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903.
    Talluri S; Raj SM; Christopher LP
    Bioresour Technol; 2013 Jul; 139():272-9. PubMed ID: 23665687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer.
    van Groenestijn JW; Geelhoed JS; Goorissen HP; Meesters KP; Stams AJ; Claassen PA
    Biotechnol Bioeng; 2009 Apr; 102(5):1361-7. PubMed ID: 19016484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of temperature and effluent recycle rate on hydrogen production by undefined bacterial granules.
    Ngoma L; Masilela P; Obazu F; Gray VM
    Bioresour Technol; 2011 Oct; 102(19):8986-91. PubMed ID: 21782420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable coexistence of two Caldicellulosiruptor species in a de novo constructed hydrogen-producing co-culture.
    Zeidan AA; Rådström P; van Niel EW
    Microb Cell Fact; 2010 Dec; 9():102. PubMed ID: 21192828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production.
    Chin HL; Chen ZS; Chou CP
    Biotechnol Prog; 2003; 19(2):383-8. PubMed ID: 12675576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-continuous biohydrogen production as an approach to generate electricity.
    García-Peña EI; Guerrero-Barajas C; Ramirez D; Arriaga-Hurtado LG
    Bioresour Technol; 2009 Dec; 100(24):6369-77. PubMed ID: 19683440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol.
    Panagiotou G; Villas-Bôas SG; Christakopoulos P; Nielsen J; Olsson L
    J Biotechnol; 2005 Feb; 115(4):425-34. PubMed ID: 15639104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of biohydrogen production by ammonia.
    Salerno MB; Park W; Zuo Y; Logan BE
    Water Res; 2006 Mar; 40(6):1167-72. PubMed ID: 16513155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 degrees C).
    Zheng H; Zeng RJ; Angelidaki I
    Biotechnol Bioeng; 2008 Aug; 100(5):1034-8. PubMed ID: 18383142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes.
    Cheong DY; Hansen CL
    Bioresour Technol; 2007 Aug; 98(11):2229-39. PubMed ID: 17107783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia.
    Venkata Mohan S; Vijaya Bhaskar Y; Sarma PN
    Water Res; 2007 Jun; 41(12):2652-64. PubMed ID: 17418367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.