These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 17216456)
1. Enhanced hydroxylation of imidacloprid by Stenotrophomonas maltophilia upon addition of sucrose. Dai YJ; Chen T; Ge F; Huan Y; Yuan S; Zhu FF Appl Microbiol Biotechnol; 2007 Apr; 74(5):995-1000. PubMed ID: 17216456 [TBL] [Abstract][Full Text] [Related]
2. Microbial hydroxylation of imidacloprid for the synthesis of highly insecticidal olefin imidacloprid. Dai YJ; Yuan S; Ge F; Chen T; Xu SC; Ni JP Appl Microbiol Biotechnol; 2006 Aug; 71(6):927-34. PubMed ID: 16307271 [TBL] [Abstract][Full Text] [Related]
3. Co-metabolic transformation of the neonicotinoid insecticide imidacloprid by the new soil isolate Pseudoxanthomonas indica CGMCC 6648. Ma Y; Zhai S; Mao SY; Sun SL; Wang Y; Liu ZH; Dai YJ; Yuan S J Environ Sci Health B; 2014; 49(9):661-70. PubMed ID: 25035915 [TBL] [Abstract][Full Text] [Related]
4. Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia. Liu Z; Dai Y; Huan Y; Liu Z; Sun L; Zhou Q; Zhang W; Sang Q; Wei H; Yuan S Appl Microbiol Biotechnol; 2013 Jul; 97(14):6537-47. PubMed ID: 23053094 [TBL] [Abstract][Full Text] [Related]
5. Biotransformation of thianicotinyl neonicotinoid insecticides: diverse molecular substituents response to metabolism by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Dai Y; Zhao Y; Zhang W; Yu C; Ji W; Xu W; Ni J; Yuan S Bioresour Technol; 2010 Jun; 101(11):3838-43. PubMed ID: 20149644 [TBL] [Abstract][Full Text] [Related]
6. Hydroxylation of thiacloprid by bacterium Stenotrophomonas maltophilia CGMCC1.1788. Zhao YJ; Dai YJ; Yu CG; Luo J; Xu WP; Ni JP; Yuan S Biodegradation; 2009 Nov; 20(6):761-8. PubMed ID: 19421875 [TBL] [Abstract][Full Text] [Related]
7. [Identification of a strain NJ2 hydroxylating imidacloprid and the transformed product]. Ge F; Dai YJ; Chen T; Yuan S Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):557-60. PubMed ID: 17037054 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Hydroxylation and Nitroreduction Pathways during Metabolism of the Neonicotinoid Insecticide Imidacloprid by Pseudomonas putida. Lu TQ; Mao SY; Sun SL; Yang WL; Ge F; Dai YJ J Agric Food Chem; 2016 Jun; 64(24):4866-75. PubMed ID: 27230024 [TBL] [Abstract][Full Text] [Related]
9. Nitroso-imidacloprid irreversibly inhibits rabbit aldehyde oxidase. Dick RA; Kanne DB; Casida JE Chem Res Toxicol; 2007 Dec; 20(12):1942-6. PubMed ID: 18001059 [TBL] [Abstract][Full Text] [Related]
10. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Pandey G; Dorrian SJ; Russell RJ; Oakeshott JG Biochem Biophys Res Commun; 2009 Mar; 380(3):710-4. PubMed ID: 19285027 [TBL] [Abstract][Full Text] [Related]
11. Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Wang Z; Yao M; Wu Y Pest Manag Sci; 2009 Nov; 65(11):1189-94. PubMed ID: 19562662 [TBL] [Abstract][Full Text] [Related]
12. N-demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Chen T; Dai YJ; Ding JF; Yuan S; Ni JP Biodegradation; 2008 Sep; 19(5):651-8. PubMed ID: 18157735 [TBL] [Abstract][Full Text] [Related]
13. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2. Wang R; Zhu Y; Deng L; Zhang H; Wang Q; Yin M; Song P; Elzaki MEA; Han Z; Wu M Insect Mol Biol; 2017 Oct; 26(5):543-551. PubMed ID: 28654199 [TBL] [Abstract][Full Text] [Related]
14. Identification of aldehyde oxidase as the neonicotinoid nitroreductase. Dick RA; Kanne DB; Casida JE Chem Res Toxicol; 2005 Feb; 18(2):317-23. PubMed ID: 15720138 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Joussen N; Heckel DG; Haas M; Schuphan I; Schmidt B Pest Manag Sci; 2008 Jan; 64(1):65-73. PubMed ID: 17912692 [TBL] [Abstract][Full Text] [Related]
16. Translocation and metabolism of imidacloprid in cabbage: Application of Chen Y; Nie E; Huang L; Lu Y; Gao X; Akhtar K; Ye Q; Wang H Chemosphere; 2021 Jan; 263():127928. PubMed ID: 32835975 [TBL] [Abstract][Full Text] [Related]
17. Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Karunker I; Morou E; Nikou D; Nauen R; Sertchook R; Stevenson BJ; Paine MJ; Morin S; Vontas J Insect Biochem Mol Biol; 2009 Oct; 39(10):697-706. PubMed ID: 19716416 [TBL] [Abstract][Full Text] [Related]
18. Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Jemec A; Tisler T; Drobne D; Sepcić K; Fournier D; Trebse P Chemosphere; 2007 Jul; 68(8):1408-18. PubMed ID: 17524455 [TBL] [Abstract][Full Text] [Related]
19. Studies on the interaction between imidacloprid and human serum albumin: spectroscopic approach. Wang YQ; Tang BP; Zhang HM; Zhou QH; Zhang GC J Photochem Photobiol B; 2009 Mar; 94(3):183-90. PubMed ID: 19126446 [TBL] [Abstract][Full Text] [Related]
20. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Karunker I; Benting J; Lueke B; Ponge T; Nauen R; Roditakis E; Vontas J; Gorman K; Denholm I; Morin S Insect Biochem Mol Biol; 2008 Jun; 38(6):634-44. PubMed ID: 18510975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]