These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 17216460)
1. Characterization of superoxide-stress sensing recombinant Escherichia coli constructed using promoters for genes zwf and fpr fused to lux operon. Niazi JH; Kim BC; Gu MB Appl Microbiol Biotechnol; 2007 Apr; 74(6):1276-83. PubMed ID: 17216460 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of the multi-channel continuous monitoring system through the use of Xenorhabdus luminescens lux fusions. Lee JH; Mitchell RJ; Gu MB Biosens Bioelectron; 2004 Oct; 20(3):475-81. PubMed ID: 15494228 [TBL] [Abstract][Full Text] [Related]
3. [Role of GroEL/GroES chaperonin system and Lon protease in regulation of expression Vibrio fischeri lux genes in Escherichia coli cells]. Manukhov IV; Kotova VIu; Zavil'genskiĭ GB Mol Biol (Mosk); 2006; 40(2):277-83. PubMed ID: 16637268 [TBL] [Abstract][Full Text] [Related]
4. An oxidative stress-specific bacterial cell array chip for toxicity analysis. Lee JH; Youn CH; Kim BC; Gu MB Biosens Bioelectron; 2007 Apr; 22(9-10):2223-9. PubMed ID: 17157494 [TBL] [Abstract][Full Text] [Related]
5. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli. Park W; Peña-Llopis S; Lee Y; Demple B Biochem Biophys Res Commun; 2006 Mar; 341(1):51-6. PubMed ID: 16412384 [TBL] [Abstract][Full Text] [Related]
6. A novel bioluminescent bacterial biosensor using the highly specific oxidative stress-inducible pgi gene. Niazi JH; Kim BC; Ahn JM; Gu MB Biosens Bioelectron; 2008 Dec; 24(4):670-5. PubMed ID: 18657410 [TBL] [Abstract][Full Text] [Related]
7. [Host factors in the regulation of the Vibrio fischeri lux operon in Escherichia coli cells]. Manukhov IV; Kotova VIu; Zavil'gel'skiĭ GB Mikrobiologiia; 2006; 75(4):525-31. PubMed ID: 17025179 [TBL] [Abstract][Full Text] [Related]
8. Construction of a sodA::luxCDABE fusion Escherichia coli: comparison with a katG fusion strain through their responses to oxidative stresses. Lee HJ; Gu MB Appl Microbiol Biotechnol; 2003 Jan; 60(5):577-80. PubMed ID: 12536259 [TBL] [Abstract][Full Text] [Related]
9. Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations. Lu C; Bentley WE; Rao G Biotechnol Bioeng; 2003 Sep; 83(7):864-70. PubMed ID: 12889026 [TBL] [Abstract][Full Text] [Related]
10. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Mitchell RJ; Gu MB Appl Microbiol Biotechnol; 2004 Mar; 64(1):46-52. PubMed ID: 12937953 [TBL] [Abstract][Full Text] [Related]
11. Interdependence of the position and orientation of SoxS binding sites in the transcriptional activation of the class I subset of Escherichia coli superoxide-inducible promoters. Wood TI; Griffith KL; Fawcett WP; Jair KW; Schneider TD; Wolf RE Mol Microbiol; 1999 Nov; 34(3):414-30. PubMed ID: 10564484 [TBL] [Abstract][Full Text] [Related]
12. Construction and characterization of novel dual stress-responsive bacterial biosensors. Mitchell RJ; Gu MB Biosens Bioelectron; 2004 Apr; 19(9):977-85. PubMed ID: 15018952 [TBL] [Abstract][Full Text] [Related]
13. Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes. Jair KW; Fawcett WP; Fujita N; Ishihama A; Wolf RE Mol Microbiol; 1996 Jan; 19(2):307-17. PubMed ID: 8825776 [TBL] [Abstract][Full Text] [Related]
14. Activation of glucose transport under oxidative stress in Escherichia coli. Rungrassamee W; Liu X; Pomposiello PJ Arch Microbiol; 2008 Jul; 190(1):41-9. PubMed ID: 18368388 [TBL] [Abstract][Full Text] [Related]
15. Modulation of gene expression from the arabinose-inducible araBAD promoter. Khlebnikov A; Skaug T; Keasling JD J Ind Microbiol Biotechnol; 2002 Jul; 29(1):34-7. PubMed ID: 12080425 [TBL] [Abstract][Full Text] [Related]
16. Dose-response relationships and statistical performance of a battery of bacterial gene profiling assays. Dardenne F; Nobels I; De Coen W; Blust R Appl Microbiol Biotechnol; 2007 May; 75(1):223-34. PubMed ID: 17225096 [TBL] [Abstract][Full Text] [Related]
17. Genetic definition of the Escherichia coli zwf "soxbox," the DNA binding site for SoxS-mediated induction of glucose 6-phosphate dehydrogenase in response to superoxide. Fawcett WP; Wolf RE J Bacteriol; 1995 Apr; 177(7):1742-50. PubMed ID: 7896696 [TBL] [Abstract][Full Text] [Related]
18. Construction of highly efficient E. coli expression systems containing low oxygen induced promoter and partition region. Liu T; Chen JY; Zheng Z; Wang TH; Chen GQ Appl Microbiol Biotechnol; 2005 Aug; 68(3):346-54. PubMed ID: 15711794 [TBL] [Abstract][Full Text] [Related]
19. Screening of target-specific stress-responsive genes for the development of cell-based biosensors using a DNA microarray. Kim BC; Youn CH; Ahn JM; Gu MB Anal Chem; 2005 Dec; 77(24):8020-6. PubMed ID: 16351151 [TBL] [Abstract][Full Text] [Related]
20. [Bioluminescent analysis of the SOS-response of Escherichia coli cells]. Ptistsyn LR Genetika; 1996 Mar; 32(3):354-8. PubMed ID: 8723628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]