These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 17216464)
1. Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits. Schehl B; Senn T; Lachenmeier DW; Rodicio R; Heinisch JJ Appl Microbiol Biotechnol; 2007 Mar; 74(4):843-50. PubMed ID: 17216464 [TBL] [Abstract][Full Text] [Related]
2. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain. Wu D; Li X; Shen C; Lu J; Chen J; Xie G Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164 [TBL] [Abstract][Full Text] [Related]
3. Effect of the stone content on the quality of plum and cherry spirits produced from mash fermentations with commercial and laboratory yeast strains. Schehl B; Lachenmeier D; Senn T; Heinisch JJ J Agric Food Chem; 2005 Oct; 53(21):8230-8. PubMed ID: 16218669 [TBL] [Abstract][Full Text] [Related]
4. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae. Guo XW; Li YZ; Guo J; Wang Q; Huang SY; Chen YF; Du LP; Xiao DG J Ind Microbiol Biotechnol; 2016 May; 43(5):671-9. PubMed ID: 26831650 [TBL] [Abstract][Full Text] [Related]
5. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae. Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438 [TBL] [Abstract][Full Text] [Related]
6. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation. Wu D; Li X; Lu J; Chen J; Zhang L; Xie G FEMS Microbiol Lett; 2016 Jan; 363(1):fnv214. PubMed ID: 26538578 [TBL] [Abstract][Full Text] [Related]
8. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. Kitamoto K; Oda K; Gomi K; Takahashi K Appl Environ Microbiol; 1991 Jan; 57(1):301-6. PubMed ID: 2036017 [TBL] [Abstract][Full Text] [Related]
9. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine. Dahabieh MS; Husnik JI; Van Vuuren HJ J Appl Microbiol; 2010 Sep; 109(3):963-73. PubMed ID: 20408912 [TBL] [Abstract][Full Text] [Related]
10. Retrospective trends and current status of ethyl carbamate in German stone-fruit spirits. Lachenmeier DW; Schehl B; Kuballa T; Frank W; Senn T Food Addit Contam; 2005 May; 22(5):397-405. PubMed ID: 16019810 [TBL] [Abstract][Full Text] [Related]
11. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation. Wu D; Xie W; Li X; Cai G; Lu J; Xie G Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703 [TBL] [Abstract][Full Text] [Related]
13. Isolation of a non-urea-producing sake yeast strain carrying a discriminable molecular marker. Kuribayashi T; Tamura H; Sato K; Nabekura Y; Aoki T; Anzawa Y; Katsumata K; Ohdaira S; Yamashita S; Kume K; Kaneoke M; Watanabe K; Hirata D Biosci Biotechnol Biochem; 2013; 77(12):2505-9. PubMed ID: 24317072 [TBL] [Abstract][Full Text] [Related]
14. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing. Wu H; Watanabe T; Araki Y; Kitagaki H; Akao T; Takagi H; Shimoi H J Biosci Bioeng; 2009 Jun; 107(6):636-40. PubMed ID: 19447341 [TBL] [Abstract][Full Text] [Related]
15. Characterization of technological features of dry yeast (strain I-7-43) preparation, product of electrofusion between Saccharomyces cerevisiae and Saccharomyces diastaticus, in industrial application. Kotarska K; Kłosowski G; Czupryński B Enzyme Microb Technol; 2011 Jun; 49(1):38-43. PubMed ID: 22112269 [TBL] [Abstract][Full Text] [Related]
16. Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production. Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY Appl Microbiol Biotechnol; 2009 Feb; 82(2):287-92. PubMed ID: 19018525 [TBL] [Abstract][Full Text] [Related]
17. Reduced production of Ethyl Carbamate in wine by regulating the accumulation of arginine in Saccharomyces cerevisiae. Gao M; Li W; Fan L; Wei C; Yu S; Chen R; Ma L; Du L; Zhang H; Yang W J Biotechnol; 2024 Apr; 385():65-74. PubMed ID: 38503366 [TBL] [Abstract][Full Text] [Related]
18. Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae. Kong QX; Cao LM; Zhang AL; Chen X Appl Microbiol Biotechnol; 2007 Jan; 73(6):1382-6. PubMed ID: 17021874 [TBL] [Abstract][Full Text] [Related]
19. Biodegradation of Ethyl Carbamate and Urea with Lysinibacillus sphaericus MT33 in Chinese Liquor Fermentation. Cui K; Wu Q; Xu Y J Agric Food Chem; 2018 Feb; 66(6):1583-1590. PubMed ID: 29359925 [TBL] [Abstract][Full Text] [Related]
20. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]