BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17216578)

  • 21. αTCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method: in vitro and in vivo studies.
    Velasquez P; Luklinska ZB; Meseguer-Olmo L; Mate-Sanchez de Val JE; Delgado-Ruiz RA; Calvo-Guirado JL; Ramirez-Fernandez MP; de Aza PN
    J Biomed Mater Res A; 2013 Jul; 101(7):1943-54. PubMed ID: 23225787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro bioactivity and gentamicin release from glass-polymer-antibiotic composites.
    Ragel CV; Vallet-Regí M
    J Biomed Mater Res; 2000 Sep; 51(3):424-9. PubMed ID: 10880085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioactive composites consisting of PEEK and calcium silicate powders.
    Kim IY; Sugino A; Kikuta K; Ohtsuki C; Cho SB
    J Biomater Appl; 2009 Aug; 24(2):105-18. PubMed ID: 18757493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing.
    Suwanprateeb J; Sanngam R; Suvannapruk W; Panyathanmaporn T
    J Mater Sci Mater Med; 2009 Jun; 20(6):1281-9. PubMed ID: 19225870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of silane coupling agent treated bovine bone based carbonated hydroxyapatite on in vitro degradation behavior and bioactivity of PLA composites.
    Rakmae S; Ruksakulpiwat Y; Sutapun W; Suppakarn N
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1428-36. PubMed ID: 24364942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO
    Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osseointegration of porous apatite-wollastonite and poly(lactic acid) composite structures created using 3D printing techniques.
    Tcacencu I; Rodrigues N; Alharbi N; Benning M; Toumpaniari S; Mancuso E; Marshall M; Bretcanu O; Birch M; McCaskie A; Dalgarno K
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():1-7. PubMed ID: 29853072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies.
    Ni S; Lin K; Chang J; Chou L
    J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles.
    Hong Z; Reis RL; Mano JF
    Acta Biomater; 2008 Sep; 4(5):1297-306. PubMed ID: 18439885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of hydrophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation.
    Zhu X; Zhong T; Huang R; Wan A
    J Biomater Sci Polym Ed; 2015; 26(17):1286-96. PubMed ID: 26324121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.
    Mohammadi MS; Ahmed I; Muja N; Rudd CD; Bureau MN; Nazhat SN
    J Mater Sci Mater Med; 2011 Dec; 22(12):2659-72. PubMed ID: 22002512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles.
    Hong Z; Reis RL; Mano JF
    J Biomed Mater Res A; 2009 Feb; 88(2):304-13. PubMed ID: 18286606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic.
    Wu C; Chang J; Wang J; Ni S; Zhai W
    Biomaterials; 2005 Jun; 26(16):2925-31. PubMed ID: 15603787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of design on bioactivity of novel CaSiO3-CaMg(SiO3)2 bioceramics: in vitro simulated body fluid test and thermodynamic simulation.
    Sainz MA; Pena P; Serena S; Caballero A
    Acta Biomater; 2010 Jul; 6(7):2797-807. PubMed ID: 20060937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.
    Wei J; Chen F; Shin JW; Hong H; Dai C; Su J; Liu C
    Biomaterials; 2009 Feb; 30(6):1080-8. PubMed ID: 19019424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of natural and synthetic wollastonite as source for bioceramics preparation.
    Carrodeguas RG; De Aza AH; De Aza PN; Baudín C; Jiménez J; López-Bravo A; Pena P; De Aza S
    J Biomed Mater Res A; 2007 Nov; 83(2):484-95. PubMed ID: 17503534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fiber-induced crystallization in polymer composites: A comparative study on poly(lactic acid) composites filled with basalt fiber and fiber powder.
    Pan H; Wang X; Jia S; Lu Z; Bian J; Yang H; Han L; Zhang H
    Int J Biol Macromol; 2021 Jul; 183():45-54. PubMed ID: 33892033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
    Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS
    Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.