BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17216578)

  • 41. Biomimetic apatite deposition on polymeric microspheres treated with a calcium silicate solution.
    Leonor IB; Balas F; Kawashita M; Reis RL; Kokubo T; Nakamura T
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):239-47. PubMed ID: 19441118
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro studies of novel CaO-SiO2-MgO system composite bioceramics.
    Ni S; Chang J; Chou L
    J Mater Sci Mater Med; 2008 Jan; 19(1):359-67. PubMed ID: 17607509
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystallization processes at the surface of polylactic acid-bioactive glass composites during immersion in simulated body fluid.
    Ginsac N; Chenal JM; Meille S; Pacard E; Zenati R; Hartmann DJ; Chevalier J
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):412-9. PubMed ID: 21948519
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of bioactive glass-reinforced HAP-polymer composites.
    Greish YE; Brown PW
    J Biomed Mater Res; 2000 Dec; 52(4):687-94. PubMed ID: 11033551
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics.
    Pu Y; Huang Y; Qi S; Chen C; Seo HJ
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():126-30. PubMed ID: 26117746
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Incorporation of titanium into calcium silicate improved their chemical stability and biological properties.
    Wu C; Ramaswamy Y; Soeparto A; Zreiqat H
    J Biomed Mater Res A; 2008 Aug; 86(2):402-10. PubMed ID: 17969034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite.
    Kamitakahara M; Ohtsuki C; Inada H; Tanihara M; Miyazaki T
    Acta Biomater; 2006 Jul; 2(4):467-71. PubMed ID: 16765885
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers.
    Kasuga T; Ota Y; Nogami M; Abe Y
    Biomaterials; 2001 Jan; 22(1):19-23. PubMed ID: 11085379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigating the in-vitro bioactivity, biodegradability and drug release behavior of the newly developed PES/HA/WS biocompatible nanocomposites as bone graft substitute.
    Salimi E; Asim MH; Abidin MNZ
    Sci Rep; 2024 May; 14(1):10798. PubMed ID: 38734777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Porous poly(L-lactic acid)/apatite composites created by biomimetic process.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Jun; 45(4):285-93. PubMed ID: 10321700
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery.
    Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S
    Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol).
    von Burkersroda F; Gref R; Göpferich A
    Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrophoretic deposition of nanobiocomposites for orthopedic applications: influence of current density and coating duration.
    Sharma S; Soni VP; Bellare JR
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S93-100. PubMed ID: 18600432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dissolution, bioactivity and osteogenic properties of composites based on polymer and silicate or borosilicate bioactive glass.
    Houaoui A; Lyyra I; Agniel R; Pauthe E; Massera J; Boissière M
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110340. PubMed ID: 31761244
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation.
    Mehdikhani-Nahrkhalaji M; Fathi MH; Mortazavi V; Mousavi SB; Hashemi-Beni B; Razavi SM
    J Mater Sci Mater Med; 2012 Feb; 23(2):485-95. PubMed ID: 22127403
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioactive glass-polymer materials for controlled release of ibuprofen.
    Ladrón de Guevara-Fernández S; Ragel CV; Vallet-Regí M
    Biomaterials; 2003 Oct; 24(22):4037-43. PubMed ID: 12834599
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly porous polymer-derived wollastonite-hydroxycarbonate apatite ceramics for bone regeneration.
    Fiocco L; Li S; Bernardo E; Stevens MM; Jones JR
    Biomed Mater; 2016 Apr; 11(2):025016. PubMed ID: 27066770
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of bioglass nanoparticles on the properties and bioactivity of poly(lactic acid) films.
    Canales D; Saavedra M; Flores MT; Bejarano J; Ortiz JA; Orihuela P; Alfaro A; Pabón E; Palza H; Zapata PA
    J Biomed Mater Res A; 2020 Oct; 108(10):2032-2043. PubMed ID: 32333463
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanosized mesoporous bioactive glass/poly(lactic-co-glycolic acid) composite-coated CaSiO3 scaffolds with multifunctional properties for bone tissue engineering.
    Shi M; Zhai D; Zhao L; Wu C; Chang J
    Biomed Res Int; 2014; 2014():323046. PubMed ID: 24724080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.