BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17216634)

  • 1. Leucyl/phenylalanyl(L/F)-tRNA-protein transferase-mediated aminoacyl transfer of a nonnatural amino acid to the N-terminus of peptides and proteins and subsequent functionalization by bioorthogonal reactions.
    Taki M; Sisido M
    Biopolymers; 2007; 88(2):263-71. PubMed ID: 17216634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NEXT-A (N-terminal EXtension with Transferase and ARS) reaction.
    Taki M; Kuroiwa H; Sisido M
    Nucleic Acids Symp Ser (Oxf); 2009; (53):37-8. PubMed ID: 19749248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.
    Fung AW; Ebhardt HA; Abeysundara H; Moore J; Xu Z; Fahlman RP
    J Mol Biol; 2011 Jun; 409(4):617-29. PubMed ID: 21530538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leucyl/Phenylalanyl-tRNA-protein transferase-mediated chemoenzymatic coupling of N-terminal Arg/Lys units in post-translationally processed proteins with non-natural amino acids.
    Taki M; Kuno A; Matoba S; Kobayashi Y; Futami J; Murakami H; Suga H; Taira K; Hasegawa T; Sisido M
    Chembiochem; 2006 Nov; 7(11):1676-9. PubMed ID: 16977663
    [No Abstract]   [Full Text] [Related]  

  • 5. Chemoenzymatic transfer of fluorescent non-natural amino acids to the N terminus of a protein/peptide.
    Taki M; Kuroiwa H; Sisido M
    Chembiochem; 2008 Mar; 9(5):719-22. PubMed ID: 18266307
    [No Abstract]   [Full Text] [Related]  

  • 6. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.
    Watanabe K; Toh Y; Suto K; Shimizu Y; Oka N; Wada T; Tomita K
    Nature; 2007 Oct; 449(7164):867-71. PubMed ID: 17891155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation initiation by using various N-acylaminoacyl tRNAs.
    Goto Y; Ashigai H; Sako Y; Murakami H; Suga H
    Nucleic Acids Symp Ser (Oxf); 2006; (50):293-4. PubMed ID: 17150933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system.
    Doi Y; Ohtsuki T; Shimizu Y; Ueda T; Sisido M
    J Am Chem Soc; 2007 Nov; 129(46):14458-62. PubMed ID: 17958427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of leucyl/phenylalanyl-tRNA-protein transferase and its complex with an aminoacyl-tRNA analog.
    Suto K; Shimizu Y; Watanabe K; Ueda T; Fukai S; Nureki O; Tomita K
    EMBO J; 2006 Dec; 25(24):5942-50. PubMed ID: 17110926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic generation of peptides flanked by basic amino acids to obtain MS/MS spectra with 2× sequence coverage.
    Ebhardt HA; Nan J; Chaulk SG; Fahlman RP; Aebersold R
    Rapid Commun Mass Spectrom; 2014 Dec; 28(24):2735-43. PubMed ID: 25380496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpectedly fast transfer of positron-emittable artificial substrate into N-terminus of peptide/protein mediated by wild-type L/F-tRNA-protein transferase.
    Taki M; Kuroiwa H
    Amino Acids; 2015 Jun; 47(6):1279-82. PubMed ID: 25929586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal specific fluorescence labeling of proteins through fourbase codon-mediated incorporation of fluorescent hydroxy acid.
    Watanabe T; Miyata Y; Abe R; Muranaka N; Hohsaka T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):363-4. PubMed ID: 18029737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the leucyl/phenylalanyl tRNA protein transferase active site with tRNA substrate analogues.
    Fung AW; Ebhardt HA; Krishnakumar KS; Moore J; Xu Z; Strazewski P; Fahlman RP
    Protein Pept Lett; 2014 Jul; 21(7):603-14. PubMed ID: 24521222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-terminal labeling of proteins using initiator tRNA.
    Olejnik J; Gite S; Mamaev S; Rothschild KJ
    Methods; 2005 Jul; 36(3):252-60. PubMed ID: 16076451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of carrier tRNAs and selection of four-base codons for efficient incorporation of various nonnatural amino acids into proteins in Spodoptera frugiperda 21 (Sf21) insect cell-free translation system.
    Taki M; Tokuda Y; Ohtsuki T; Sisido M
    J Biosci Bioeng; 2006 Dec; 102(6):511-7. PubMed ID: 17270715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-terminal specific fluorescence labeling of proteins through incorporation of fluorescent hydroxy acid and subsequent ester cleavage.
    Watanabe T; Miyata Y; Abe R; Muranaka N; Hohsaka T
    Chembiochem; 2008 May; 9(8):1235-42. PubMed ID: 18418818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific protein modification on living cells catalyzed by Sortase.
    Tanaka T; Yamamoto T; Tsukiji S; Nagamune T
    Chembiochem; 2008 Mar; 9(5):802-7. PubMed ID: 18297670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying Arginylation for Bottom-Up Proteomics.
    Ebhardt HA
    Methods Mol Biol; 2015; 1337():129-38. PubMed ID: 26285889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation initiation with initiator tRNA charged with exotic peptides.
    Goto Y; Suga H
    J Am Chem Soc; 2009 Apr; 131(14):5040-1. PubMed ID: 19301866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexizyme as a versatile tRNA acylation catalyst and the application for translation.
    Murakami H; Ohta A; Goto Y; Sako Y; Suga H
    Nucleic Acids Symp Ser (Oxf); 2006; (50):35-6. PubMed ID: 17150804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.