These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
516 related articles for article (PubMed ID: 17216660)
1. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. van den Bosch PL; van Beusekom OC; Buisman CJ; Janssen AJ Biotechnol Bioeng; 2007 Aug; 97(5):1053-63. PubMed ID: 17216660 [TBL] [Abstract][Full Text] [Related]
2. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Hubert C; Nemati M; Jenneman G; Voordouw G Biotechnol Prog; 2003; 19(2):338-45. PubMed ID: 12675569 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen sulfide production from elemental sulfur by Desulfovibrio desulfuricans in an anaerobic bioreactor. Escobar C; Bravo L; Hernández J; Herrera L Biotechnol Bioeng; 2007 Oct; 98(3):569-77. PubMed ID: 17421040 [TBL] [Abstract][Full Text] [Related]
4. Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor. Moghanloo GM; Fatehifar E; Saedy S; Aghaeifar Z; Abbasnezhad H Bioresour Technol; 2010 Nov; 101(21):8330-5. PubMed ID: 20594822 [TBL] [Abstract][Full Text] [Related]
5. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Kaksonen AH; Franzmann PD; Puhakka JA Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513 [TBL] [Abstract][Full Text] [Related]
6. Sulfide removal by moderate oxygenation of anaerobic sludge environments. van der Zee FP; Villaverde S; García PA; Fdz-Polanco F Bioresour Technol; 2007 Feb; 98(3):518-24. PubMed ID: 16630720 [TBL] [Abstract][Full Text] [Related]
7. Pathways of sulfide oxidation by haloalkaliphilic bacteria in limited-oxygen gas lift bioreactors. Klok JB; van den Bosch PL; Buisman CJ; Stams AJ; Keesman KJ; Janssen AJ Environ Sci Technol; 2012 Jul; 46(14):7581-6. PubMed ID: 22697609 [TBL] [Abstract][Full Text] [Related]
8. Biological sulfide removal under alkaline and aerobic conditions in a packed recycling reactor. González-Sánchez A; Revah S Water Sci Technol; 2009; 59(7):1415-21. PubMed ID: 19381008 [TBL] [Abstract][Full Text] [Related]
9. Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Jin Y; Veiga MC; Kennes C Biotechnol Bioeng; 2005 Nov; 92(4):462-71. PubMed ID: 16025537 [TBL] [Abstract][Full Text] [Related]
10. Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidothiobacillus ferrooxidans cells. Kim TW; Kim CJ; Chang YK; Ryu HW; Cho KS Biotechnol Prog; 2002; 18(4):752-9. PubMed ID: 12153309 [TBL] [Abstract][Full Text] [Related]
11. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater. Rattanapan C; Boonsawang P; Kantachote D Bioresour Technol; 2009 Jan; 100(1):125-30. PubMed ID: 18619836 [TBL] [Abstract][Full Text] [Related]
12. Performance of a sulfide-oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent. Sahinkaya E; Hasar H; Kaksonen AH; Rittmann BE Environ Sci Technol; 2011 May; 45(9):4080-7. PubMed ID: 21452867 [TBL] [Abstract][Full Text] [Related]
13. Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Manconi I; Carucci A; Lens P Biotechnol Bioeng; 2007 Oct; 98(3):551-60. PubMed ID: 17724757 [TBL] [Abstract][Full Text] [Related]
14. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. Lee EY; Lee NY; Cho KS; Ryu HW J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938 [TBL] [Abstract][Full Text] [Related]
15. Polysulfide reduction using sulfate-reducing bacteria in a photocatalytic hydrogen generation system. Takahashi Y; Suto K; Inoue C; Chida T J Biosci Bioeng; 2008 Sep; 106(3):219-25. PubMed ID: 18929995 [TBL] [Abstract][Full Text] [Related]
16. Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria. Selvaraj PT; Little MH; Kaufman EN Biotechnol Prog; 1997; 13(5):583-9. PubMed ID: 9376112 [TBL] [Abstract][Full Text] [Related]
17. Biological sulfide oxidation in an airlift bioreactor. Lohwacharin J; Annachhatre AP Bioresour Technol; 2010 Apr; 101(7):2114-20. PubMed ID: 19942429 [TBL] [Abstract][Full Text] [Related]
18. Extremely acidophilic sulfur-oxidizing bacteria applied in biotechnological processes for gas purification. Kraakman NJ; Pol A; Smeulders MJ; Jetten MS; Op Den Camp HJ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(7):964-9. PubMed ID: 22486665 [TBL] [Abstract][Full Text] [Related]
19. Effect of biologically produced sulfur on gas absorption in a biotechnological hydrogen sulfide removal process. Kleinjan WE; Lammers JN; de Keizer A; Janssen AJ Biotechnol Bioeng; 2006 Jul; 94(4):633-44. PubMed ID: 16514676 [TBL] [Abstract][Full Text] [Related]
20. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Kleerebezem R; Mendez R Water Sci Technol; 2002; 45(10):349-56. PubMed ID: 12188569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]