BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17217503)

  • 21. Analyzing yeast protein-protein interaction data obtained from different sources.
    Bader GD; Hogue CW
    Nat Biotechnol; 2002 Oct; 20(10):991-7. PubMed ID: 12355115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining multisource information through functional-annotation-based weighting: gene function prediction in yeast.
    Ray SS; Bandyopadhyay S; Pal SK
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):229-36. PubMed ID: 19272921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
    Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K
    J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving protein complex classification accuracy using amino acid composition profile.
    Huang CH; Chou SY; Ng KL
    Comput Biol Med; 2013 Sep; 43(9):1196-204. PubMed ID: 23930814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate extraction of functional associations between proteins based on common interaction partners and common domains.
    Okada K; Kanaya S; Asai K
    Bioinformatics; 2005 May; 21(9):2043-8. PubMed ID: 15699027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.
    Qian J; Dolled-Filhart M; Lin J; Yu H; Gerstein M
    J Mol Biol; 2001 Dec; 314(5):1053-66. PubMed ID: 11743722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conserved network motifs allow protein-protein interaction prediction.
    Albert I; Albert R
    Bioinformatics; 2004 Dec; 20(18):3346-52. PubMed ID: 15247093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying cycling genes by combining sequence homology and expression data.
    Lu Y; Rosenfeld R; Bar-Joseph Z
    Bioinformatics; 2006 Jul; 22(14):e314-22. PubMed ID: 16873488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FCP: functional coverage of the proteome by structures.
    García-Serna R; Opatowski L; Mestres J
    Bioinformatics; 2006 Jul; 22(14):1792-3. PubMed ID: 16705012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complementary techniques of clustering and composite pattern analysis to Saccharomyces cerevisiae gene expression.
    Magusin A
    Appl Bioinformatics; 2003; 2(3 Suppl):S37-46. PubMed ID: 15130815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.
    Bailey UM; Schulz BL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ClusFCM: an algorithm for predicting protein functions using homologies and protein interactions.
    Nguyen C; Mannino M; Gardiner K; Cios KJ
    J Bioinform Comput Biol; 2008 Feb; 6(1):203-22. PubMed ID: 18324753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blast sampling for structural and functional analyses.
    Friedrich A; Ripp R; Garnier N; Bettler E; Deléage G; Poch O; Moulinier L
    BMC Bioinformatics; 2007 Feb; 8():62. PubMed ID: 17319945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role-similarity based functional prediction in networked systems: application to the yeast proteome.
    Holme P; Huss M
    J R Soc Interface; 2005 Sep; 2(4):327-33. PubMed ID: 16849190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein structural similarity search by Ramachandran codes.
    Lo WC; Huang PJ; Chang CH; Lyu PC
    BMC Bioinformatics; 2007 Aug; 8():307. PubMed ID: 17716377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Rosetta stone method.
    Date SV
    Methods Mol Biol; 2008; 453():169-80. PubMed ID: 18712302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational identification of human mitochondrial proteins based on homology to yeast mitochondrially targeted proteins.
    Cameron JM; Hurd T; Robinson BH
    Bioinformatics; 2005 May; 21(9):1825-30. PubMed ID: 15671119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A proteomics approach to understanding protein ubiquitination.
    Peng J; Schwartz D; Elias JE; Thoreen CC; Cheng D; Marsischky G; Roelofs J; Finley D; Gygi SP
    Nat Biotechnol; 2003 Aug; 21(8):921-6. PubMed ID: 12872131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteome folding kinetics is limited by protein halflife.
    Zou T; Williams N; Ozkan SB; Ghosh K
    PLoS One; 2014; 9(11):e112701. PubMed ID: 25393560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-scale co-evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP).
    Kim WK; Bolser DM; Park JH
    Bioinformatics; 2004 May; 20(7):1138-50. PubMed ID: 14764552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.