BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17217522)

  • 1. A fast parallel algorithm for finding the longest common sequence of multiple biosequences.
    Chen Y; Wan A; Liu W
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S4. PubMed ID: 17217522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An OpenMP-based tool for finding longest common subsequence in bioinformatics.
    Shikder R; Thulasiraman P; Irani P; Hu P
    BMC Res Notes; 2019 Apr; 12(1):220. PubMed ID: 30971295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel progressive multiple sequence alignment on reconfigurable meshes.
    Nguyen KD; Pan Y; Nong G
    BMC Genomics; 2011 Dec; 12 Suppl 5(Suppl 5):S4. PubMed ID: 22369070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Multiple Fickett Bands to Accelerate Biological Sequence Comparisons.
    Silva GHG; Sandes EFO; Teodoro G; Melo ACMA
    J Comput Biol; 2019 Sep; 26(9):908-922. PubMed ID: 30951368
    [No Abstract]   [Full Text] [Related]  

  • 5. Efficient Computation of Longest Common Subsequences with Multiple Substring Inclusive Constraints.
    Wang X; Wang L; Zhu D
    J Comput Biol; 2019 Sep; 26(9):938-947. PubMed ID: 30958704
    [No Abstract]   [Full Text] [Related]  

  • 6. Multiple sequence alignment in parallel on a workstation cluster.
    Ebedes J; Datta A
    Bioinformatics; 2004 May; 20(7):1193-5. PubMed ID: 14764554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super pairwise alignment (SPA): an efficient approach to global alignment for homologous sequences.
    Shen SY; Yang J; Yao A; Hwang PI
    J Comput Biol; 2002; 9(3):477-86. PubMed ID: 12162887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A memory-efficient algorithm for multiple sequence alignment with constraints.
    Lu CL; Huang YP
    Bioinformatics; 2005 Jan; 21(1):20-30. PubMed ID: 15374876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parallel pairwise local sequence alignment algorithm.
    Bandyopadhyay S; Mitra R
    IEEE Trans Nanobioscience; 2009 Jun; 8(2):139-46. PubMed ID: 19366648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient constrained multiple sequence alignment with performance guarantee.
    Chin FY; Ho NL; Lam TW; Wong PW
    J Bioinform Comput Biol; 2005 Feb; 3(1):1-18. PubMed ID: 15751109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact asymptotic results for the Bernoulli matching model of sequence alignment.
    Majumdar SN; Nechaev S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):020901. PubMed ID: 16196539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel pattern identification in biological sequences on clusters.
    Huang CH; Rajasekaran S
    IEEE Trans Nanobioscience; 2003 Mar; 2(1):29-34. PubMed ID: 15382420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved distance matrix computation algorithm for multicore clusters.
    Al-Neama MW; Reda NM; Ghaleb FF
    Biomed Res Int; 2014; 2014():406178. PubMed ID: 25013779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences.
    Katoh K; Toh H
    Bioinformatics; 2007 Feb; 23(3):372-4. PubMed ID: 17118958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a better solution to the shortest common supersequence problem: the deposition and reduction algorithm.
    Ning K; Leong HW
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S12. PubMed ID: 17217504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using sequence compression to speedup probabilistic profile matching.
    Freschi V; Bogliolo A
    Bioinformatics; 2005 May; 21(10):2225-9. PubMed ID: 15713733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new algorithm for "the LCS problem" with application in compressing genome resequencing data.
    Beal R; Afrin T; Farheen A; Adjeroh D
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):544. PubMed ID: 27556803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Randomized and parallel algorithms for distance matrix calculations in multiple sequence alignment.
    Rajasekaran S; Thapar V; Dave H; Huang CH
    J Clin Monit Comput; 2005 Oct; 19(4-5):351-9. PubMed ID: 16328949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple sequence alignment with arbitrary gap costs: computing an optimal solution using polyhedral combinatorics.
    Althaus E; Caprara A; Lenhof HP; Reinert K
    Bioinformatics; 2002; 18 Suppl 2():S4-S16. PubMed ID: 12385977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement in accuracy of multiple sequence alignment using novel group-to-group sequence alignment algorithm with piecewise linear gap cost.
    Yamada S; Gotoh O; Yamana H
    BMC Bioinformatics; 2006 Dec; 7():524. PubMed ID: 17137519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.