These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17217993)

  • 1. Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode.
    Jeong J; Kim JY; Cho M; Choi W; Yoon J
    Chemosphere; 2007 Mar; 67(4):652-9. PubMed ID: 17217993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes.
    Jeong J; Kim C; Yoon J
    Water Res; 2009 Mar; 43(4):895-901. PubMed ID: 19084255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of electrochemical disinfection on Escherichia coli and Legionella pneumophila in tap water.
    Delaedt Y; Daneels A; Declerck P; Behets J; Ryckeboer J; Peters E; Ollevier F
    Microbiol Res; 2008; 163(2):192-9. PubMed ID: 16793247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of reactive oxygen species in the electrochemical inactivation of microorganisms.
    Jeong J; Kim JY; Yoon J
    Environ Sci Technol; 2006 Oct; 40(19):6117-22. PubMed ID: 17051809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of Escherichia coli by sonoelectrocatalytic disinfection using TiO2 as electrode.
    Ninomiya K; Arakawa M; Ogino C; Shimizu N
    Ultrason Sonochem; 2013 Mar; 20(2):762-7. PubMed ID: 23141189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis.
    Nakajima N; Nakano T; Harada F; Taniguchi H; Yokoyama I; Hirose J; Daikoku E; Sano K
    J Microbiol Methods; 2004 May; 57(2):163-73. PubMed ID: 15063056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes--contribution for direct reuse of domestic wastewater.
    Schmalz V; Dittmar T; Haaken D; Worch E
    Water Res; 2009 Dec; 43(20):5260-6. PubMed ID: 19819516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-energy intensive electrochemical system for the eradication of Escherichia coli from ballast water: process development, disinfection chemistry, and kinetics modeling.
    Nanayakkara KG; Alam AK; Zheng YM; Chen JP
    Mar Pollut Bull; 2012 Jun; 64(6):1238-45. PubMed ID: 22483951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Killing of Escherichia coli using the gas diffusion electrode system.
    Xu WY; Li P; Dong B
    Water Sci Technol; 2010; 61(1):107-18. PubMed ID: 20057096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative electrochemical degradation of phthalic acid esters using boron-doped diamond and Pt anodes.
    Li H; Zhu X; Jiang Y; Ni J
    Chemosphere; 2010 Aug; 80(8):845-51. PubMed ID: 20591467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparison of the effectiveness of water disinfection by electrolysis and chlorination].
    Erusalimskaia LF; Slipchenko AV; Iakimuk LP
    Gig Sanit; 1989 Nov; (11):73-5. PubMed ID: 2516492
    [No Abstract]   [Full Text] [Related]  

  • 12. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.
    Echardt J; Kornmueller A
    Water Sci Technol; 2009; 60(9):2227-34. PubMed ID: 19901453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ability of electrochemical oxidation with a BDD anode to inactivate Gram-negative and Gram-positive bacteria in low conductivity sulfate medium.
    Bruguera-Casamada C; Sirés I; Prieto MJ; Brillas E; Araujo RM
    Chemosphere; 2016 Nov; 163():516-524. PubMed ID: 27567151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro inactivation of Escherichia coli, Staphylococcus aureus and Salmonella spp. using slightly acidic electrolyzed water.
    Issa-Zacharia A; Kamitani Y; Tiisekwa A; Morita K; Iwasaki K
    J Biosci Bioeng; 2010 Sep; 110(3):308-13. PubMed ID: 20547336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical degradation of phenol using electrodes of Ti/RuO(2)-Pt and Ti/IrO(2)-Pt.
    Li M; Feng C; Hu W; Zhang Z; Sugiura N
    J Hazard Mater; 2009 Feb; 162(1):455-62. PubMed ID: 18599203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions.
    Joyce E; Mason TJ; Phull SS; Lorimer JP
    Ultrason Sonochem; 2003 Jul; 10(4-5):231-4. PubMed ID: 12818387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided electrochemical cell.
    Pillai KC; Kwon TO; Park BB; Moon IS
    J Hazard Mater; 2009 May; 164(2-3):812-9. PubMed ID: 18838217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: the effects of pH and reactive oxygen species and the results of kinetic studies.
    Jung YJ; Baek KW; Oh BS; Kang JW
    Water Res; 2010 Oct; 44(18):5345-55. PubMed ID: 20619871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the inactivation of Bacillus subtilis spores and MS2 bacteriophage by MIOX, ClorTec and hypochlorite.
    Clevenger T; Wu Y; DeGruson E; Brazos B; Banerji S
    J Appl Microbiol; 2007 Dec; 103(6):2285-90. PubMed ID: 18045412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical advanced oxidation process using DiaChem electrodes.
    Tröster I; Schäfer L; Fryda M; Matthée T
    Water Sci Technol; 2004; 49(4):207-12. PubMed ID: 15077973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.