BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 17218023)

  • 1. Impaired spatial working memory and altered choline acetyltransferase (CHAT) immunoreactivity and nicotinic receptor binding in rats exposed to intermittent hypoxia during sleep.
    Row BW; Kheirandish L; Cheng Y; Rowell PP; Gozal D
    Behav Brain Res; 2007 Feb; 177(2):308-14. PubMed ID: 17218023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclooxygenase 2 and intermittent hypoxia-induced spatial deficits in the rat.
    Li RC; Row BW; Gozal E; Kheirandish L; Fan Q; Brittian KR; Guo SZ; Sachleben LR; Gozal D
    Am J Respir Crit Care Med; 2003 Aug; 168(4):469-75. PubMed ID: 12773326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical activity attenuates intermittent hypoxia-induced spatial learning deficits and oxidative stress.
    Gozal D; Nair D; Goldbart AD
    Am J Respir Crit Care Med; 2010 Jul; 182(1):104-12. PubMed ID: 20224062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High fat/refined carbohydrate diet enhances the susceptibility to spatial learning deficits in rats exposed to intermittent hypoxia.
    Goldbart AD; Row BW; Kheirandish-Gozal L; Cheng Y; Brittian KR; Gozal D
    Brain Res; 2006 May; 1090(1):190-6. PubMed ID: 16674930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits.
    Kauser H; Sahu S; Kumar S; Panjwani U
    Physiol Behav; 2014 Jan; 123():187-92. PubMed ID: 24184415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic intermittent hypoxia increases encoding pigment epithelium-derived factor gene expression, although not that of the protein itself, in the temporal cortex of rats.
    Julian GS; Oliveira RW; Favaro VM; Oliveira MG; Perry JC; Tufik S; Chagas JR
    J Bras Pneumol; 2015; 41(1):39-47. PubMed ID: 25750673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxin and impaired spatial learning and memory in the rats exposed to intermittent hypoxia.
    Yang XH; Liu HG; Liu X; Chen JN
    Chin Med J (Engl); 2012 Sep; 125(17):3074-80. PubMed ID: 22932184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat.
    Row BW; Liu R; Xu W; Kheirandish L; Gozal D
    Am J Respir Crit Care Med; 2003 Jun; 167(11):1548-53. PubMed ID: 12615622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermittent hypoxia during development induces long-term alterations in spatial working memory, monoamines, and dendritic branching in rat frontal cortex.
    Kheirandish L; Gozal D; Pequignot JM; Pequignot J; Row BW
    Pediatr Res; 2005 Sep; 58(3):594-9. PubMed ID: 16148079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neonatal Intermittent Hypoxia Induces Lasting Sex-Specific Augmentation of Rat Microglial Cytokine Expression.
    Kiernan EA; Wang T; Vanderplow AM; Cherukuri S; Cahill ME; Watters JJ
    Front Immunol; 2019; 10():1479. PubMed ID: 31333645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The progressive effects of chronic intermittent hypoxia on cognitive function and the cholinergic neuron in rats].
    Chen Y; Zhao CL; Zhang CL; Xu Q
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2011 May; 27(2):192-5. PubMed ID: 21845870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal forebrain cholinergic neurons are necessary for estrogen to enhance acquisition of a delayed matching-to-position T-maze task.
    Gibbs RB
    Horm Behav; 2002 Nov; 42(3):245-57. PubMed ID: 12460585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous erythropoietin administration attenuates intermittent hypoxia-induced cognitive deficits in a murine model of sleep apnea.
    Dayyat EA; Zhang SX; Wang Y; Cheng ZJ; Gozal D
    BMC Neurosci; 2012 Jul; 13():77. PubMed ID: 22759774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairment of basal forebrain cholinergic neurons associated with aging and long-term loss of ovarian function.
    Gibbs RB
    Exp Neurol; 1998 Jun; 151(2):289-302. PubMed ID: 9628764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effects of sodium p-aminosalicylic acid on learning and memory via increasing the number of basal forebrain choline acetyltransferase neurons in manganese-exposed rats.
    Li SJ; Meng HY; Deng XF; Fu X; Chen JW; Huang S; Huang YS; Luo HL; Ou SY; Jiang YM
    Hum Exp Toxicol; 2015 Mar; 34(3):240-8. PubMed ID: 24972623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of resveratrol against chronic intermittent hypoxia-induced spatial memory deficits, hippocampal oxidative DNA damage and increased p47Phox NADPH oxidase expression in young rats.
    Abdel-Wahab BA; Abdel-Wahab MM
    Behav Brain Res; 2016 May; 305():65-75. PubMed ID: 26940604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 6-OHDA lesions of the nucleus accumbens accentuate memory deficits in animals with lesions to the forebrain cholinergic projection system: effects of nicotine administration on learning and memory in the water maze.
    Grigoryan G; Hodges H; Mitchell S; Sinden JD; Gray JA
    Neurobiol Learn Mem; 1996 Mar; 65(2):135-53. PubMed ID: 8833103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adolescent binge ethanol exposure alters specific forebrain cholinergic cell populations and leads to selective functional deficits in the prefrontal cortex.
    Fernandez GM; Savage LM
    Neuroscience; 2017 Oct; 361():129-143. PubMed ID: 28807788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial learning and memory deficits following exposure to 24 h of sleep fragmentation or intermittent hypoxia in a rat model of obstructive sleep apnea.
    Ward CP; McCoy JG; McKenna JT; Connolly NP; McCarley RW; Strecker RE
    Brain Res; 2009 Oct; 1294():128-37. PubMed ID: 19643093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic administration of a partial muscarinic M1 receptor agonist attenuates decreases in forebrain choline acetyltransferase immunoreactivity following experimental brain trauma.
    Pike BR; Hamm RJ
    Exp Neurol; 1997 Sep; 147(1):55-65. PubMed ID: 9294403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.