These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 17218339)
1. Stem-righting mechanism in gymnosperm trees deduced from limitations in compression wood development. Yamashita S; Yoshida M; Takayama S; Okuyama T Ann Bot; 2007 Mar; 99(3):487-93. PubMed ID: 17218339 [TBL] [Abstract][Full Text] [Related]
2. Growth stress distribution in leaning trunks of Cryptomeria japonica. Huang YS; Chen SS; Lin TP; Chen YS Tree Physiol; 2001 Mar; 21(4):261-6. PubMed ID: 11276420 [TBL] [Abstract][Full Text] [Related]
3. Graviresponses in herb and trees: a major role for the redistribution of tissue and growth stresses. Hejnowicz Z Planta; 1997 Sep; 203(Suppl 1):S136-46. PubMed ID: 11540322 [TBL] [Abstract][Full Text] [Related]
4. Stem gravitropism and tension wood formation in Acacia mangium seedlings inclined at various angles. Nugroho WD; Nakaba S; Yamagishi Y; Begum S; Rahman MH; Kudo K; Marsoem SN; Funada R Ann Bot; 2018 Jun; 122(1):87-94. PubMed ID: 29726920 [TBL] [Abstract][Full Text] [Related]
5. Changes in xylem tissue and laccase transcript abundance associated with posture recovery in Chamaecyparis obtusa saplings growing on an incline. Sato S; Hiraide H; Yoshida M; Yamamoto H Funct Plant Biol; 2013 Jul; 40(6):637-643. PubMed ID: 32481137 [TBL] [Abstract][Full Text] [Related]
6. Integrative biomechanics for tree ecology: beyond wood density and strength. Fournier M; Dlouhá J; Jaouen G; Almeras T J Exp Bot; 2013 Nov; 64(15):4793-815. PubMed ID: 24014867 [TBL] [Abstract][Full Text] [Related]
7. Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading. Berthier S; Stokes A Tree Physiol; 2006 Jan; 26(1):73-9. PubMed ID: 16203716 [TBL] [Abstract][Full Text] [Related]
8. Growth stress controls negative gravitropism in woody plant stems. Yamamoto H; Yoshida M; Okuyama T Planta; 2002 Dec; 216(2):280-92. PubMed ID: 12447542 [TBL] [Abstract][Full Text] [Related]
9. Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.). Andersson S; Wang Y; Pönni R; Hänninen T; Mononen M; Ren H; Serimaa R; Saranpää P J Integr Plant Biol; 2015 Apr; 57(4):388-95. PubMed ID: 25740619 [TBL] [Abstract][Full Text] [Related]
10. Effect of tree size and competition on tension wood production over time in beech plantations and assessing relative gravitropic response with a biomechanical model. Dassot M; Fournier M; Ningre F; Constant T Am J Bot; 2012 Sep; 99(9):1427-35. PubMed ID: 22922395 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. Alméras T; Fournier M J Theor Biol; 2009 Feb; 256(3):370-81. PubMed ID: 19013473 [TBL] [Abstract][Full Text] [Related]
12. Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Nugroho WD; Yamagishi Y; Nakaba S; Fukuhara S; Begum S; Marsoem SN; Ko JH; Jin HO; Funada R Ann Bot; 2012 Sep; 110(4):887-95. PubMed ID: 22843341 [TBL] [Abstract][Full Text] [Related]
13. Mechanical contribution of secondary phloem to postural control in trees: the bark side of the force. Clair B; Ghislain B; Prunier J; Lehnebach R; Beauchêne J; Alméras T New Phytol; 2019 Jan; 221(1):209-217. PubMed ID: 30076782 [TBL] [Abstract][Full Text] [Related]
14. Stem phototropism of trees: a possible significant factor in determining stem inclination on forest slopes. Matsuzaki J; Masumori M; Tange T Ann Bot; 2006 Sep; 98(3):573-81. PubMed ID: 16790467 [TBL] [Abstract][Full Text] [Related]
15. Screening genes that change expression during compression wood formation in Chamaecyparis obtusa. Yamashita S; Yoshida M; Yamamoto H; Okuyama T Tree Physiol; 2008 Sep; 28(9):1331-40. PubMed ID: 18595845 [TBL] [Abstract][Full Text] [Related]
16. Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment. Read J; Evans R; Sanson GD; Kerr S; Jaffré T Am J Bot; 2011 Nov; 98(11):1762-72. PubMed ID: 21984616 [TBL] [Abstract][Full Text] [Related]
17. Differential anatomical responses to elevated CO2 in saplings of four hardwood species. Watanabe Y; Satomura T; Sasa K; Funada R; Koike T Plant Cell Environ; 2010 Jul; 33(7):1101-11. PubMed ID: 20199624 [TBL] [Abstract][Full Text] [Related]
18. Regulation by uniconazole-P and gibberellins of morphological and anatomical responses of Fraxinus mandshurica seedlings to gravity. Jiang S; Honma T; Nakamura T; Furukawa I; Yamamoto F IAWA J; 1998; 19(3):311-20. PubMed ID: 11542470 [TBL] [Abstract][Full Text] [Related]
19. Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods. Nakagawa K; Yoshinaga A; Takabe K Ann Bot; 2012 Sep; 110(4):897-904. PubMed ID: 22778147 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of xylan and mannan polysaccharides and their spatial relationship with other cell wall components in differentiating compression wood tracheids of Cryptomeria japonica. Kim JS; Awano T; Yoshinaga A; Takabe K Planta; 2011 Apr; 233(4):721-35. PubMed ID: 21184094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]