These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17218459)

  • 21. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex.
    Gondeau C; Maurizot JC; Durand M
    Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triple helix formation and homologous strand exchange in pyrene-labeled oligonucleotides.
    Mohammadi S; Slama-Schwok A; Léger G; el Manouni D; Shchyolkina A; Leroux Y; Taillandier E
    Biochemistry; 1997 Dec; 36(48):14836-44. PubMed ID: 9398205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-strand-targeted triplex formation: stability, specificity and RNase H activation properties.
    Kandimalla ER; Agrawal S
    Gene; 1994 Nov; 149(1):115-21. PubMed ID: 7525410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectroscopic studies on the interaction of aristololactam-beta-D-glucoside with DNA and RNA double and triple helices: A comparative study.
    Ray A; Kumar GS; Das S; Maiti M
    Biochemistry; 1999 May; 38(19):6239-47. PubMed ID: 10320353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution structure of an antiparallel purine motif triplex containing a T.CG pyrimidine base triple.
    Ji J; Hogan ME; Gao X
    Structure; 1996 Apr; 4(4):425-35. PubMed ID: 8740365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bulge defects in intramolecular pyrimidine.purine.pyrimidine DNA triplexes in solution.
    Wang Y; Patel DJ
    Biochemistry; 1995 Apr; 34(16):5696-704. PubMed ID: 7727429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FTIR and UV spectroscopy studies of triplex formation between alpha-oligonucleotides with non-ionic phoshoramidate linkages and DNA targets.
    Michel T; Debart F; Vasseur JJ; Geinguenaud F; Taillandier E
    J Biomol Struct Dyn; 2003 Dec; 21(3):435-45. PubMed ID: 14616038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition.
    Xodo L; Alunni-Fabbroni M; Manzini G; Quadrifoglio F
    Nucleic Acids Res; 1994 Aug; 22(16):3322-30. PubMed ID: 8078767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Base pairing and steric interactions between pyrimidine strand bridging loops and the purine strand in DNA pyrimidine.purine.pyrimidine triplexes.
    Booher MA; Wang S; Kool ET
    Biochemistry; 1994 Apr; 33(15):4645-51. PubMed ID: 8161521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures.
    Das S; Kumar GS; Ray A; Maiti M
    J Biomol Struct Dyn; 2003 Apr; 20(5):703-14. PubMed ID: 12643773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-stranded (triplex) DNAs (RNAs): do they have a role in biology?
    Morgan AR
    Indian J Biochem Biophys; 1994 Apr; 31(2):83-7. PubMed ID: 7523282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and monitored selection of nucleotide surrogates for binding T:A base pairs in homopurine-homopyrimidine DNA triple helices.
    Mokhir AA; Connors WH; Richert C
    Nucleic Acids Res; 2001 Sep; 29(17):3674-84. PubMed ID: 11522839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drug binding to higher ordered DNA structures: netropsin complexation with a nucleic acid triple helix.
    Park YW; Breslauer KJ
    Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6653-7. PubMed ID: 1321445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein.
    Jain A; Akanchha S; Rajeswari MR
    Biochimie; 2005 Aug; 87(8):781-90. PubMed ID: 15885869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix.
    Völker J; Osborne SE; Glick GD; Breslauer KJ
    Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purine- and pyrimidine-triple-helix-forming oligonucleotides recognize qualitatively different target sites at the ribosomal DNA locus.
    Maldonado R; Filarsky M; Grummt I; Längst G
    RNA; 2018 Mar; 24(3):371-380. PubMed ID: 29222118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triple-strand formation in the homopurine:homopyrimidine DNA oligonucleotides d(G-A)4 and d(T-C)4.
    Rajagopal P; Feigon J
    Nature; 1989 Jun; 339(6226):637-40. PubMed ID: 2733796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilization of a Bimolecular Triplex by 3'-S-Phosphorothiolate Modifications: An NMR and UV Thermal Melting Investigation.
    Evans K; Bhamra I; Wheelhouse RT; Arnold JR; Cosstick R; Fisher J
    Chemistry; 2015 May; 21(19):7278-84. PubMed ID: 25802084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA.
    Kosbar TR; Sofan MA; Abou-Zeid L; Pedersen EB
    Org Biomol Chem; 2015 May; 13(18):5115-21. PubMed ID: 25833006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homopurine and homopyrimidine strands complementary in parallel orientation form an antiparallel duplex at neutral pH with A-C, G-T, and T-C mismatched base pairs.
    Bhaumik SR; Chary KV; Govil G; Liu K; Miles HT
    Biopolymers; 1997 Jun; 41(7):773-84. PubMed ID: 9128440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.