BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17218460)

  • 1. A molecular dynamics study of the ligand release path in yeast cytosine deaminase.
    Yao L; Yan H; Cukier RI
    Biophys J; 2007 Apr; 92(7):2301-10. PubMed ID: 17218460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular dynamics exploration of the catalytic mechanism of yeast cytosine deaminase.
    Yao L; Sklenak S; Yan H; Cukier RI
    J Phys Chem B; 2005 Apr; 109(15):7500-10. PubMed ID: 16851861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Product release mechanism and the complete enzyme catalysis cycle in yeast cytosine deaminase (yCD): A computational study.
    Zhao Y; She N; Zhang X; Wang C; Mo Y
    Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1020-1029. PubMed ID: 28478051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic mechanism of yeast cytosine deaminase: an ONIOM computational study.
    Sklenak S; Yao L; Cukier RI; Yan H
    J Am Chem Soc; 2004 Nov; 126(45):14879-89. PubMed ID: 15535715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of glutamate 64 in the activation of the prodrug 5-fluorocytosine by yeast cytosine deaminase.
    Wang J; Sklenak S; Liu A; Felczak K; Wu Y; Li Y; Yan H
    Biochemistry; 2012 Jan; 51(1):475-86. PubMed ID: 22208667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An insight into the environmental effects of the pocket of the active site of the enzyme. Ab initio ONIOM-molecular dynamics (MD) study on cytosine deaminase.
    Matsubara T; Dupuis M; Aida M
    J Comput Chem; 2008 Feb; 29(3):458-65. PubMed ID: 17663441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined QM(DFT)/MM molecular dynamics simulations of the deamination of cytosine by yeast cytosine deaminase (yCD).
    Zhang X; Zhao Y; Yan H; Cao Z; Mo Y
    J Comput Chem; 2016 May; 37(13):1163-74. PubMed ID: 26813441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of a transition-state analogue at the active site of yeast cytosine deaminase: importance of proton transfers.
    Xu Q; Guo H; Gorin A; Guo H
    J Phys Chem B; 2007 Jun; 111(23):6501-6. PubMed ID: 17506543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined ONIOM quantum chemical-molecular dynamics study of zinc-uracil bond breaking in yeast cytosine deaminase.
    Yao L; Yan H; Cukier RI
    J Phys Chem B; 2006 Dec; 110(51):26320-6. PubMed ID: 17181291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction mechanism of zinc-dependent cytosine deaminase from Escherichia coli: a quantum-chemical study.
    Manta B; Raushel FM; Himo F
    J Phys Chem B; 2014 May; 118(21):5644-52. PubMed ID: 24833316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Product release is rate-limiting in the activation of the prodrug 5-fluorocytosine by yeast cytosine deaminase.
    Yao L; Li Y; Wu Y; Liu A; Yan H
    Biochemistry; 2005 Apr; 44(15):5940-7. PubMed ID: 15823054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structure and catalytic mechanism of cytosine deaminase.
    Hall RS; Fedorov AA; Xu C; Fedorov EV; Almo SC; Raushel FM
    Biochemistry; 2011 Jun; 50(22):5077-85. PubMed ID: 21545144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics.
    Rozovsky S; Jogl G; Tong L; McDermott AE
    J Mol Biol; 2001 Jun; 310(1):271-80. PubMed ID: 11419952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The conversion of protonated cytosine-SO3(-) to uracil-SO3(-): insights into the novel induced hydrolytic deamination through bisulfite catalysis.
    Jin L; Wang W; Hu D; Lü J
    Phys Chem Chem Phys; 2013 Jun; 15(23):9034-42. PubMed ID: 23652599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active site loop motion in triosephosphate isomerase: T-jump relaxation spectroscopy of thermal activation.
    Desamero R; Rozovsky S; Zhadin N; McDermott A; Callender R
    Biochemistry; 2003 Mar; 42(10):2941-51. PubMed ID: 12627960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the Active Site Lid Dynamics to Improve the Catalytic Efficiency of Yeast Cytosine Deaminase.
    Deng H; Qin M; Liu Z; Yang Y; Wang Y; Yao L
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.
    Dutta S; Nandi N
    J Phys Chem B; 2015 Aug; 119(34):10832-48. PubMed ID: 25794108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site dynamics of the HhaI methyltransferase: insights from computer simulation.
    Lau EY; Bruice TC
    J Mol Biol; 1999 Oct; 293(1):9-18. PubMed ID: 10512711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanics study and Monte Carlo simulation on the hydrolytic deamination of 5-methylcytosine glycol.
    Chen ZQ; Zhang CH; Kim CK; Xue Y
    Phys Chem Chem Phys; 2011 Apr; 13(14):6471-83. PubMed ID: 21380473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.