BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17218460)

  • 21. Computational study of the deamination reaction of cytosine with H2O and OH-.
    Almatarneh MH; Flinn CG; Poirier RA; Sokalski WA
    J Phys Chem A; 2006 Jul; 110(26):8227-34. PubMed ID: 16805511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specificity and catalysis of uracil DNA glycosylase. A molecular dynamics study of reactant and product complexes with DNA.
    Luo N; Mehler E; Osman R
    Biochemistry; 1999 Jul; 38(29):9209-20. PubMed ID: 10413495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The time scale of the catalytic loop motion in triosephosphate isomerase.
    Rozovsky S; McDermott AE
    J Mol Biol; 2001 Jun; 310(1):259-70. PubMed ID: 11419951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational thermostabilization of an enzyme.
    Korkegian A; Black ME; Baker D; Stoddard BL
    Science; 2005 May; 308(5723):857-60. PubMed ID: 15879217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling.
    Van Belle D; De Maria L; Iurcu G; Wodak SJ
    J Mol Biol; 2000 May; 298(4):705-26. PubMed ID: 10788331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Release of ADP from the catalytic subunit of protein kinase A: a molecular dynamics simulation study.
    Lu B; Wong CF; McCammon JA
    Protein Sci; 2005 Jan; 14(1):159-68. PubMed ID: 15608120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric structural motions of the homomeric alpha7 nicotinic receptor ligand binding domain revealed by molecular dynamics simulation.
    Henchman RH; Wang HL; Sine SM; Taylor P; McCammon JA
    Biophys J; 2003 Nov; 85(5):3007-18. PubMed ID: 14581202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B; Shieh FK; Buller F; Bullock T; Reich NO
    Biochemistry; 2007 Jul; 46(30):8766-75. PubMed ID: 17616174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of function and mechanistic insights of guanine deaminase from Nitrosomonas europaea: role of the C-terminal loop in catalysis.
    Bitra A; Hussain B; Tanwar AS; Anand R
    Biochemistry; 2013 May; 52(20):3512-22. PubMed ID: 23557066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways.
    Fuxreiter M; Magyar C; Juhász T; Szeltner Z; Polgár L; Simon I
    Proteins; 2005 Aug; 60(3):504-12. PubMed ID: 15971204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rescue of the orphan enzyme isoguanine deaminase.
    Hitchcock DS; Fedorov AA; Fedorov EV; Dangott LJ; Almo SC; Raushel FM
    Biochemistry; 2011 Jun; 50(25):5555-7. PubMed ID: 21604715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Sosa-Peinado A; Rudiño-Piñera E; Horjales E; Calcagno ML
    J Mol Biol; 2002 May; 319(1):183-9. PubMed ID: 12051945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit.
    Kapustina M; Carter CW
    J Mol Biol; 2006 Oct; 362(5):1159-80. PubMed ID: 16949606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionarily conserved and non-conserved retrovirus restriction activities of artiodactyl APOBEC3F proteins.
    Jónsson SR; Haché G; Stenglein MD; Fahrenkrug SC; Andrésdóttir V; Harris RS
    Nucleic Acids Res; 2006; 34(19):5683-94. PubMed ID: 17038330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):813-30. PubMed ID: 11061977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure of Escherichia coli cytosine deaminase.
    Ireton GC; McDermott G; Black ME; Stoddard BL
    J Mol Biol; 2002 Jan; 315(4):687-97. PubMed ID: 11812140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HhaI DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine.
    Daujotyte D; Serva S; Vilkaitis G; Merkiene E; Venclovas C; Klimasauskas S
    Structure; 2004 Jun; 12(6):1047-55. PubMed ID: 15274924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanism of target base attack in DNA cytosine carbon 5 methylation.
    Svedruzić ZM; Reich NO
    Biochemistry; 2004 Sep; 43(36):11460-73. PubMed ID: 15350132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution NMR and computer simulation studies of active site loop motion in triosephosphate isomerase.
    Massi F; Wang C; Palmer AG
    Biochemistry; 2006 Sep; 45(36):10787-94. PubMed ID: 16953564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations.
    Knaggs MH; Salsbury FR; Edgell MH; Fetrow JS
    Biophys J; 2007 Mar; 92(6):2062-79. PubMed ID: 17172298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.