These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17218493)

  • 1. Floral gigantism in Rafflesiaceae.
    Davis CC; Latvis M; Nickrent DL; Wurdack KJ; Baum DA
    Science; 2007 Mar; 315(5820):1812. PubMed ID: 17218493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floral evolution: dramatic size change was recent and rapid in the world's largest flowers.
    Davis CC
    Curr Biol; 2008 Dec; 18(23):R1102-4. PubMed ID: 19081046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated rates of floral evolution at the upper size limit for flowers.
    Barkman TJ; Bendiksby M; Lim SH; Salleh KM; Nais J; Madulid D; Schumacher T
    Curr Biol; 2008 Oct; 18(19):1508-13. PubMed ID: 18848446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating the evolutionary history of the Southeast Asian, holoparasitic, giant-flowered Rafflesiaceae: pliocene vicariance, morphological convergence and character displacement.
    Bendiksby M; Schumacher T; Gussarova G; Nais J; Mat-Salleh K; Sofiyanti N; Madulid D; Smith SA; Barkman T
    Mol Phylogenet Evol; 2010 Nov; 57(2):620-33. PubMed ID: 20723606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking floral symmetry genes to breeding system evolution.
    Kalisz S; Ree RH; Sargent RD
    Trends Plant Sci; 2006 Dec; 11(12):568-73. PubMed ID: 17097332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers.
    Bateman RM; Hilton J; Rudall PJ
    J Exp Bot; 2006; 57(13):3471-503. PubMed ID: 17056677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of funnel-revolver flowers and ornithophily in nasa (loasaceae).
    Weigend M; Gottschling M
    Plant Biol (Stuttg); 2006 Jan; 8(1):120-42. PubMed ID: 16435276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution.
    Reeves PA; Olmstead RG
    Mol Biol Evol; 2003 Dec; 20(12):1997-2009. PubMed ID: 12885953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales.
    Davis CC; Wurdack KJ
    Science; 2004 Jul; 305(5684):676-8. PubMed ID: 15256617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia.
    Nikolov LA; Staedler YM; Manickam S; Schönenberger J; Endress PK; Kramer EM; Davis CC
    Am J Bot; 2014 Feb; 101(2):225-43. PubMed ID: 24509798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of the petal and stamen identity genes, APETALA3 and PISTILLATA, after petal loss in the Piperales.
    Jaramillo MA; Kramer EM
    Mol Phylogenet Evol; 2007 Aug; 44(2):598-609. PubMed ID: 17576077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae).
    Sauquet H; Weston PH; Barker NP; Anderson CL; Cantrill DJ; Savolainen V
    Mol Phylogenet Evol; 2009 Apr; 51(1):31-43. PubMed ID: 19135535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perianth organization and intra-specific floral variability.
    Herrera J; Arista M; Ortiz PL
    Plant Biol (Stuttg); 2008 Nov; 10(6):704-10. PubMed ID: 18950427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins. On the origin of flowering plants.
    Pennisi E
    Science; 2009 Apr; 324(5923):28-31. PubMed ID: 19342565
    [No Abstract]   [Full Text] [Related]  

  • 15. After a dozen years of progress the origin of angiosperms is still a great mystery.
    Frohlich MW; Chase MW
    Nature; 2007 Dec; 450(7173):1184-9. PubMed ID: 18097399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world's largest flowers.
    Nikolov LA; Tomlinson PB; Manickam S; Endress PK; Kramer EM; Davis CC
    Ann Bot; 2014 Aug; 114(2):233-42. PubMed ID: 24942001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of floral gigantism.
    Davis CC; Endress PK; Baum DA
    Curr Opin Plant Biol; 2008 Feb; 11(1):49-57. PubMed ID: 18207449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata.
    Rudall PJ; Bateman RM
    Trends Plant Sci; 2003 Feb; 8(2):76-82. PubMed ID: 12597874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flower diversity and angiosperm diversification.
    Soltis PS; Soltis DE
    Methods Mol Biol; 2014; 1110():85-102. PubMed ID: 24395253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel floral adaptations to pollination by fungus gnats within the genus Mitella (Saxifragaceae).
    Okuyama Y; Pellmyr O; Kato M
    Mol Phylogenet Evol; 2008 Feb; 46(2):560-75. PubMed ID: 18248825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.