These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 17218521)

  • 21. Accretion of the Earth and segregation of its core.
    Wood BJ; Walter MJ; Wade J
    Nature; 2006 Jun; 441(7095):825-33. PubMed ID: 16778882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast accretion of the earth with a late moon-forming giant impact.
    Yu G; Jacobsen SB
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):17604-9. PubMed ID: 22006299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-chondritic sulphur isotope composition of the terrestrial mantle.
    Labidi J; Cartigny P; Moreira M
    Nature; 2013 Sep; 501(7466):208-11. PubMed ID: 24005324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth.
    Boyet M; Carlson RW
    Science; 2005 Jul; 309(5734):576-81. PubMed ID: 15961629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cooling of the Earth and core formation after the giant impact.
    Wood BJ; Halliday AN
    Nature; 2005 Oct; 437(7063):1345-8. PubMed ID: 16251962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Earth's 'missing' niobium may be in the core.
    Wade J; Wood BJ
    Nature; 2001 Jan; 409(6816):75-8. PubMed ID: 11343115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics.
    Münker C; Pfänder JA; Weyer S; Büchl A; Kleine T; Mezger K
    Science; 2003 Jul; 301(5629):84-7. PubMed ID: 12843390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact.
    Jacobson SA; Morbidelli A; Raymond SN; O'Brien DP; Walsh KJ; Rubie DC
    Nature; 2014 Apr; 508(7494):84-7. PubMed ID: 24695310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth.
    Halliday AN
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4163-81. PubMed ID: 18826916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstructing the late-accretion history of the Moon.
    Zhu MH; Artemieva N; Morbidelli A; Yin QZ; Becker H; Wünnemann K
    Nature; 2019 Jul; 571(7764):226-229. PubMed ID: 31292556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The isotopic nature of the Earth's accreting material through time.
    Dauphas N
    Nature; 2017 Jan; 541(7638):521-524. PubMed ID: 28128239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core.
    Scherstén A; Elliott T; Hawkesworth C; Norman M
    Nature; 2004 Jan; 427(6971):234-7. PubMed ID: 14724635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry.
    Kleine T; Münker C; Mezger K; Palme H
    Nature; 2002 Aug; 418(6901):952-5. PubMed ID: 12198541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isotopes as tracers of the sources of the lunar material and processes of lunar origin.
    Pahlevan K
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130257. PubMed ID: 25114306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth.
    Halliday AN
    Nature; 2004 Feb; 427(6974):505-9. PubMed ID: 14765187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Volatile element depletion of the Moon-The roles of precursors, post-impact disk dynamics, and core formation.
    Righter K
    Sci Adv; 2019 Jan; 5(1):eaau7658. PubMed ID: 30746461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogen isotope evidence for Earth's heterogeneous accretion of volatiles.
    Shi L; Lu W; Kagoshima T; Sano Y; Gao Z; Du Z; Liu Y; Fei Y; Li Y
    Nat Commun; 2022 Aug; 13(1):4769. PubMed ID: 35970934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon.
    Caro G; Bourdon B; Halliday AN; Quitté G
    Nature; 2008 Mar; 452(7185):336-9. PubMed ID: 18354479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Abundance and distribution of iron on the moon.
    Lucey PG; Taylor GJ; Malaret E
    Science; 1995 May; 268(5214):1150-3. PubMed ID: 17840628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Partitioning of oxygen during core formation on the Earth and Mars.
    Rubie DC; Gessmann CK; Frost DJ
    Nature; 2004 May; 429(6987):58-61. PubMed ID: 15129278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.