These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17218798)

  • 21. Effects of anorectic drugs on the topography of feeding behavior in baboons.
    Foltin RW
    J Pharmacol Exp Ther; 1989 Apr; 249(1):101-9. PubMed ID: 2709326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of cocaine and d-amphetamine on behavior maintained under various schedules of food presentation in squirrel monkeys.
    Gonzalez FA; Goldberg SR
    J Pharmacol Exp Ther; 1977 Apr; 201(1):33-43. PubMed ID: 403281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of the cannabinoid antagonist SR141716 (rimonabant) and d-amphetamine on palatable food and food pellet intake in non-human primates.
    Foltin RW; Haney M
    Pharmacol Biochem Behav; 2007 Apr; 86(4):766-73. PubMed ID: 17445873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attenuation of cocaine-seeking behaviour by the AMPA/kainate receptor antagonist CNQX in rats.
    Bäckström P; Hyytiä P
    Psychopharmacology (Berl); 2003 Feb; 166(1):69-76. PubMed ID: 12525959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of schedule of reinforcement on a pentobarbital discrimination in rats.
    Snodgrass SH; McMillan DE
    J Exp Anal Behav; 1991 Sep; 56(2):313-29. PubMed ID: 1955819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rimonabant reduces the essential value of food in the genetically obese Zucker rat: an exponential demand analysis.
    Rasmussen EB; Reilly W; Buckley J; Boomhower SR
    Physiol Behav; 2012 Feb; 105(3):734-41. PubMed ID: 22019829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lack of tolerance to the suppressing effect of rimonabant on chocolate intake in rats.
    Gessa GL; Orrù A; Lai P; Maccioni P; Lecca R; Lobina C; Carai MA; Colombo G
    Psychopharmacology (Berl); 2006 Apr; 185(2):248-54. PubMed ID: 16491428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Naloxone and rimonabant reduce the reinforcing properties of exercise in rats.
    Rasmussen EB; Hillman C
    Exp Clin Psychopharmacol; 2011 Dec; 19(6):389-400. PubMed ID: 21707193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. d-Fenfluramine and salbutamol: two drugs causing anorexia through different neurochemical mechanisms.
    Garattini S; Samanin R
    Int J Obes; 1984; 8 Suppl 1():151-7. PubMed ID: 6534892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interaction of d-amphetamine and naloxone differs for rats trained on separate fixed-interval or fixed-ratio schedules of reinforcement.
    Andrews JS; Holtzman SG
    Pharmacol Biochem Behav; 1987 Jan; 26(1):167-71. PubMed ID: 3562487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences between the anorexic actions of amphetamine and fenfluramine--possible effects on hunger and satiety.
    Blundell JE; Latham CJ; Leshem MB
    J Pharm Pharmacol; 1976 Jun; 28(6):471-7. PubMed ID: 7642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug effects on responding maintained by stimulus-reinforcer and response-reinforcer contingencies.
    Spealman RD; Katz JL; Witkin JM
    J Exp Anal Behav; 1978 Sep; 30(2):187-96. PubMed ID: 702026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anorectic agents and progressive ratio in the rat.
    Gylys JA
    Arch Int Pharmacodyn Ther; 1967 Oct; 169(2):354-61. PubMed ID: 6064565
    [No Abstract]   [Full Text] [Related]  

  • 34. The effect of depletion of brain dopamine by 6-hydroxydopamine on tolerance to the anorexic effect of d-amphetamine and fenfluramine in rats.
    Heffner TG; Seiden LS
    J Pharmacol Exp Ther; 1979 Jan; 208(1):134-43. PubMed ID: 759608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The anorectic action of naloxone is attenuated by adaptation to a food-deprivation schedule.
    Sanger DJ; McCarthy PS
    Psychopharmacology (Berl); 1982; 77(4):336-8. PubMed ID: 6813893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dopamine efflux in the nucleus accumbens during within-session extinction, outcome-dependent, and habit-based instrumental responding for food reward.
    Ahn S; Phillips AG
    Psychopharmacology (Berl); 2007 Apr; 191(3):641-51. PubMed ID: 16960698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective associations produced solely with appetitive contingencies: the stimulus-reinforcer interaction revisited.
    Weiss SJ; Panlilio LV; Schindler CW
    J Exp Anal Behav; 1993 Mar; 59(2):309-22. PubMed ID: 8454957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sibutramine & naloxone: infra-additive interaction in the regulation of appetite?
    Tallett AJ; Blundell JE; Rodgers RJ
    Behav Brain Res; 2010 Feb; 207(1):174-81. PubMed ID: 19818809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethanol self-administration in mice under a second-order schedule.
    Lamb RJ; Pinkston JW; Ginsburg BC
    Alcohol; 2015 Sep; 49(6):561-70. PubMed ID: 26254963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Punished behavior: increases in responding after d-amphetamine.
    McKearney JW; Barrett JE
    Psychopharmacologia; 1975; 41(1):23-6. PubMed ID: 804701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.