BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 17219055)

  • 21. Multiple Cu-ATPase genes are differentially expressed and transcriptionally regulated by Cu exposure in sea bream, Sparus aurata.
    Minghetti M; Leaver MJ; George SG
    Aquat Toxicol; 2010 Apr; 97(1):23-33. PubMed ID: 20044148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein.
    Rodriguez-Granillo A; Crespo A; Estrin DA; Wittung-Stafshede P
    J Phys Chem B; 2010 Mar; 114(10):3698-706. PubMed ID: 20166696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli.
    Bramkamp M; Altendorf K
    Biochemistry; 2004 Sep; 43(38):12289-96. PubMed ID: 15379567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heavy metal transport CPx-ATPases from the thermophile Archaeoglobus fulgidus.
    Argüello JM; Mandal AK; Mana-Capelli S
    Ann N Y Acad Sci; 2003 Apr; 986():212-8. PubMed ID: 12763798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.
    Okkeri J; Laakkonen L; Haltia T
    Biochem J; 2004 Jan; 377(Pt 1):95-105. PubMed ID: 14510639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain.
    Mana-Capelli S; Mandal AK; Argüello JM
    J Biol Chem; 2003 Oct; 278(42):40534-41. PubMed ID: 12876283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward a molecular understanding of metal transport by P(1B)-type ATPases.
    Rosenzweig AC; Argüello JM
    Curr Top Membr; 2012; 69():113-36. PubMed ID: 23046649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational dynamics of metal-binding domains in Wilson disease protein: molecular insights into selective copper transfer.
    Rodriguez-Granillo A; Crespo A; Wittung-Stafshede P
    Biochemistry; 2009 Jun; 48(25):5849-63. PubMed ID: 19449859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal Selectivity of a Cd-, Co-, and Zn-Transporting P
    Smith AT; Ross MO; Hoffman BM; Rosenzweig AC
    Biochemistry; 2017 Jan; 56(1):85-95. PubMed ID: 28001366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On allosteric modulation of P-type Cu(+)-ATPases.
    Mattle D; Sitsel O; Autzen HE; Meloni G; Gourdon P; Nissen P
    J Mol Biol; 2013 Jul; 425(13):2299-308. PubMed ID: 23500486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In silico modeling of the Menkes copper-translocating P-type ATPase 3rd metal binding domain predicts that phosphorylation regulates copper-binding.
    Veldhuis NA; Kuiper MJ; Dobson RC; Pearson RB; Camakaris J
    Biometals; 2011 Jun; 24(3):477-87. PubMed ID: 21258844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps.
    Møller AB; Asp T; Holm PB; Palmgren MG
    Mol Phylogenet Evol; 2008 Feb; 46(2):619-34. PubMed ID: 18155930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K(+)-transporting KdpFABC P-type ATPase.
    Ahnert F; Schmid R; Altendorf K; Greie JC
    Biochemistry; 2006 Sep; 45(36):11038-46. PubMed ID: 16953591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli (Review).
    Bramkamp M; Altendorf K; Greie JC
    Mol Membr Biol; 2007; 24(5-6):375-86. PubMed ID: 17710642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prokaryotic Kdp-ATPase: recent insights into the structure and function of KdpB.
    Haupt M; Bramkamp M; Coles M; Kessler H; Altendorf K
    J Mol Microbiol Biotechnol; 2005; 10(2-4):120-31. PubMed ID: 16645309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer.
    Singleton C; Le Brun NE
    Biometals; 2007 Jun; 20(3-4):275-89. PubMed ID: 17225061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations.
    Dmitriev O; Tsivkovskii R; Abildgaard F; Morgan CT; Markley JL; Lutsenko S
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5302-7. PubMed ID: 16567646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle.
    Meng D; Bruschweiler-Li L; Zhang F; Brüschweiler R
    Biochemistry; 2015 Aug; 54(32):5095-102. PubMed ID: 26196187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic analysis of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes.
    Dutta SJ; Liu J; Mitra B
    Biochemistry; 2005 Nov; 44(43):14268-74. PubMed ID: 16245943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.