These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17219153)

  • 1. Prediction of air temperature for thermal comfort of people in outdoor environments.
    Huang J
    Int J Biometeorol; 2007 May; 51(5):375-82. PubMed ID: 17219153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of wind and human movement on the heat and vapour transfer properties of clothing.
    Parsons KC; Havenith G; Holmér I; Nilsson H; Malchaire J
    Ann Occup Hyg; 1999 Jul; 43(5):347-52. PubMed ID: 10481634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Part B: Revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity.
    Kenny NA; Warland JS; Brown RD; Gillespie TG
    Int J Biometeorol; 2009 Sep; 53(5):429-41. PubMed ID: 19396619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between clothing ventilation and thermal insulation.
    Bouskill LM; Havenith G; Kuklane K; Parsons KC; Withey WR
    AIHA J (Fairfax, Va); 2002; 63(3):262-8. PubMed ID: 12173174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation.
    Lu Y; Wang F; Wan X; Song G; Zhang C; Shi W
    Int J Biometeorol; 2015 Oct; 59(10):1487-98. PubMed ID: 25605409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting survival time for cold exposure.
    Tikuisis P
    Int J Biometeorol; 1995 Nov; 39(2):94-102. PubMed ID: 8530210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation.
    Lu Y; Wang F; Wan X; Song G; Shi W; Zhang C
    Int J Biometeorol; 2015 Oct; 59(10):1475-86. PubMed ID: 25597033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind.
    Qian X; Fan J
    Ann Occup Hyg; 2006 Nov; 50(8):833-42. PubMed ID: 16857703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urban outdoor thermal environment and adaptive thermal comfort during the summer.
    Zhen M; Zou W; Zheng R; Lu Y
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77864-77883. PubMed ID: 35687281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.
    Henriksson O; Lundgren P; Kuklane K; Holmér I; Naredi P; Bjornstig U
    Prehosp Disaster Med; 2012 Feb; 27(1):53-8. PubMed ID: 22445055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI--a case study in Southern Brazil.
    Bröde P; Krüger EL; Rossi FA; Fiala D
    Int J Biometeorol; 2012 May; 56(3):471-80. PubMed ID: 21604151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field study of pedestrians' comfort temperatures under outdoor and semi-outdoor conditions in Malaysian university campuses.
    Othman NE; Zaki SA; Rijal HB; Ahmad NH; Razak AA
    Int J Biometeorol; 2021 Apr; 65(4):453-477. PubMed ID: 33416948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thermal environment and air quality on outdoor thermal comfort in urban parks of Tianjin, China.
    Bian G; Gao X; Zou Q; Cheng Q; Sun T; Sha S; Zhen M
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):97363-97376. PubMed ID: 37589851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The UTCI-clothing model.
    Havenith G; Fiala D; Błazejczyk K; Richards M; Bröde P; Holmér I; Rintamaki H; Benshabat Y; Jendritzky G
    Int J Biometeorol; 2012 May; 56(3):461-70. PubMed ID: 21607531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating an advanced smartphone application for thermal advising in cold environments.
    Eggeling J; Rydenfält C; Halder A; Toftum J; Nybo L; Kingma B; Gao C
    Int J Biometeorol; 2023 Dec; 67(12):1957-1964. PubMed ID: 37833565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.
    Henriksson O; Lundgren JP; Kuklane K; Holmér I; Bjornstig U
    Prehosp Disaster Med; 2009; 24(5):408-15. PubMed ID: 20066643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating cold, wind, and moisture protection of different coverings for prehospital maritime transportation-a thermal manikin and human study.
    Jussila K; Rissanen S; Parkkola K; Anttonen Hannu
    Prehosp Disaster Med; 2014 Dec; 29(6):580-8. PubMed ID: 25358397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between thermal environments and clothing insulation for elderly individuals in Shanghai, China.
    Jiao Y; Yu H; Wang T; An Y; Yu Y
    J Therm Biol; 2017 Dec; 70(Pt A):28-36. PubMed ID: 29074023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the impact of heat on human physical work capacity; part II: the observed interaction of air velocity with temperature, humidity, sweat rate, and clothing is not captured by most heat stress indices.
    Foster J; Smallcombe JW; Hodder S; Jay O; Flouris AD; Havenith G
    Int J Biometeorol; 2022 Mar; 66(3):507-520. PubMed ID: 34743228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The evaluation of the thermal environment of man (author's transl)].
    Sönning W; Jendritzky G
    Zentralbl Bakteriol B; 1979 Oct; 169(3-4):391-7. PubMed ID: 543363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.