These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis. Pihl M; Davies JR; Chávez de Paz LE; Svensäter G FEMS Immunol Med Microbiol; 2010 Aug; 59(3):439-46. PubMed ID: 20528934 [TBL] [Abstract][Full Text] [Related]
24. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments. Ramsey MM; Whiteley M Mol Microbiol; 2004 Aug; 53(4):1075-87. PubMed ID: 15306012 [TBL] [Abstract][Full Text] [Related]
25. Role of mutation in Pseudomonas aeruginosa biofilm development. Conibear TC; Collins SL; Webb JS PLoS One; 2009 Jul; 4(7):e6289. PubMed ID: 19606212 [TBL] [Abstract][Full Text] [Related]
26. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. Lequette Y; Greenberg EP J Bacteriol; 2005 Jan; 187(1):37-44. PubMed ID: 15601686 [TBL] [Abstract][Full Text] [Related]
27. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Pamp SJ; Sternberg C; Tolker-Nielsen T Cytometry A; 2009 Feb; 75(2):90-103. PubMed ID: 19051241 [TBL] [Abstract][Full Text] [Related]
28. Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Weitere M; Bergfeld T; Rice SA; Matz C; Kjelleberg S Environ Microbiol; 2005 Oct; 7(10):1593-601. PubMed ID: 16156732 [TBL] [Abstract][Full Text] [Related]
29. Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Yu H; He X; Xie W; Xiong J; Sheng H; Guo S; Huang C; Zhang D; Zhang K Can J Microbiol; 2014 Apr; 60(4):227-35. PubMed ID: 24693981 [TBL] [Abstract][Full Text] [Related]
33. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces. Pereira FD; Bonatto CC; Lopes CA; Pereira AL; Silva LP Microb Pathog; 2015 Sep; 86():32-7. PubMed ID: 26162295 [TBL] [Abstract][Full Text] [Related]
34. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm. Dong D; Thomas N; Thierry B; Vreugde S; Prestidge CA; Wormald PJ PLoS One; 2015; 10(6):e0131806. PubMed ID: 26125555 [TBL] [Abstract][Full Text] [Related]
35. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms. Salek MM; Jones SM; Martinuzzi RJ Biofouling; 2009 Nov; 25(8):711-25. PubMed ID: 20183130 [TBL] [Abstract][Full Text] [Related]
37. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Van Alst NE; Picardo KF; Iglewski BH; Haidaris CG Infect Immun; 2007 Aug; 75(8):3780-90. PubMed ID: 17526746 [TBL] [Abstract][Full Text] [Related]
38. Cell death in Pseudomonas aeruginosa biofilm development. Webb JS; Thompson LS; James S; Charlton T; Tolker-Nielsen T; Koch B; Givskov M; Kjelleberg S J Bacteriol; 2003 Aug; 185(15):4585-92. PubMed ID: 12867469 [TBL] [Abstract][Full Text] [Related]
39. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Diggle SP; Stacey RE; Dodd C; Cámara M; Williams P; Winzer K Environ Microbiol; 2006 Jun; 8(6):1095-104. PubMed ID: 16689730 [TBL] [Abstract][Full Text] [Related]