BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17220366)

  • 1. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula.
    Tellström V; Usadel B; Thimm O; Stitt M; Küster H; Niehaus K
    Plant Physiol; 2007 Feb; 143(2):825-37. PubMed ID: 17220366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants.
    Scheidle H; Gross A; Niehaus K
    New Phytol; 2005 Feb; 165(2):559-65. PubMed ID: 15720666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant.
    Jones KM; Sharopova N; Lohar DP; Zhang JQ; VandenBosch KA; Walker GC
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):704-9. PubMed ID: 18184805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sinorhizobium meliloti succinylated high-molecular-weight succinoglycan and the Medicago truncatula LysM receptor-like kinase MtLYK10 participate independently in symbiotic infection.
    Maillet F; Fournier J; Mendis HC; Tadege M; Wen J; Ratet P; Mysore KS; Gough C; Jones KM
    Plant J; 2020 Apr; 102(2):311-326. PubMed ID: 31782853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification and expression profiling analysis of the Aux/IAA gene family in Medicago truncatula during the early phase of Sinorhizobium meliloti infection.
    Shen C; Yue R; Yang Y; Zhang L; Sun T; Xu L; Tie S; Wang H
    PLoS One; 2014; 9(9):e107495. PubMed ID: 25226164
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Ghosh P; Adolphsen KN; Yurgel SN; Kahn ML
    Appl Environ Microbiol; 2021 Jul; 87(15):e0300420. PubMed ID: 33990306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti.
    Pii Y; Astegno A; Peroni E; Zaccardelli M; Pandolfini T; Crimi M
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1577-87. PubMed ID: 19888823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection.
    Yang Y; Yue R; Sun T; Zhang L; Chen W; Zeng H; Wang H; Shen C
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):841-54. PubMed ID: 25529315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NPR1 protein regulates pathogenic and symbiotic interactions between Rhizobium and legumes and non-legumes.
    Peleg-Grossman S; Golani Y; Kaye Y; Melamed-Book N; Levine A
    PLoS One; 2009 Dec; 4(12):e8399. PubMed ID: 20027302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis.
    Andrio E; Marino D; Marmeys A; de Segonzac MD; Damiani I; Genre A; Huguet S; Frendo P; Puppo A; Pauly N
    New Phytol; 2013 Apr; 198(1):179-189. PubMed ID: 23347006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions.
    Hidalgo-Castellanos J; Duque AS; Burgueño A; Herrera-Cervera JA; Fevereiro P; López-Gómez M
    J Plant Physiol; 2019 Oct; 241():153034. PubMed ID: 31493718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis.
    Pfeilmeier S; George J; Morel A; Roy S; Smoker M; Stransfeld L; Downie JA; Peeters N; Malone JG; Zipfel C
    Plant Biotechnol J; 2019 Mar; 17(3):569-579. PubMed ID: 30120864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Analysis of Sinorhizobium meliloti and Medicago truncatula Symbiosis Using Nitrogen Fixation-Deficient Nodules.
    Lang C; Long SR
    Mol Plant Microbe Interact; 2015 Aug; 28(8):856-68. PubMed ID: 25844838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach.
    Godiard L; Niebel A; Micheli F; Gouzy J; Ott T; Gamas P
    Mol Plant Microbe Interact; 2007 Mar; 20(3):321-32. PubMed ID: 17378435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis.
    Mitra RM; Long SR
    Plant Physiol; 2004 Feb; 134(2):595-604. PubMed ID: 14739349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection.
    Shen C; Yue R; Bai Y; Feng R; Sun T; Wang X; Yang Y; Tie S; Wang H
    Plant Cell Physiol; 2015 Oct; 56(10):1930-43. PubMed ID: 26228273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of an elicitor-induced oxidative burst reaction in Medicago sativa cell cultures by Sinorhizobium meliloti lipopolysaccharides.
    Albus U; Baier R; Holst O; Pühler A; Niehaus K
    New Phytol; 2001 Sep; 151(3):597-606. PubMed ID: 33853246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprograming in root nodules of Medicago truncatula.
    Seabra AR; Pereira PA; Becker JD; Carvalho HG
    Mol Plant Microbe Interact; 2012 Jul; 25(7):976-92. PubMed ID: 22414438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MtNOA1/RIF1 modulates Medicago truncatula-Sinorhizobium meliloti nodule development without affecting its nitric oxide content.
    Pauly N; Ferrari C; Andrio E; Marino D; Piardi S; Brouquisse R; Baudouin E; Puppo A
    J Exp Bot; 2011 Jan; 62(3):939-48. PubMed ID: 21071678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa).
    Mendis HC; Queiroux C; Brewer TE; Davis OM; Washburn BK; Jones KM
    Mol Plant Microbe Interact; 2013 Sep; 26(9):1089-105. PubMed ID: 23656330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.