BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 17220972)

  • 1. Alternative donor substrates for inverting and retaining glycosyltransferases.
    Lairson LL; Wakarchuk WW; Withers SG
    Chem Commun (Camb); 2007 Jan; (4):365-7. PubMed ID: 17220972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosyl transferase activity of the Escherichia coli penicillin-binding protein 1b: specificity profile for the substrate.
    Fraipont C; Sapunaric F; Zervosen A; Auger G; Devreese B; Lioux T; Blanot D; Mengin-Lecreulx D; Herdewijn P; Van Beeumen J; Frère JM; Nguyen-Distèche M
    Biochemistry; 2006 Mar; 45(12):4007-13. PubMed ID: 16548528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC.
    Tvaroska I
    Carbohydr Res; 2004 Apr; 339(5):1007-14. PubMed ID: 15010308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Snapshots of α-1,3-Galactosyltransferase with Native Substrates: Insight into the Catalytic Mechanism of Retaining Glycosyltransferases.
    Albesa-Jové D; Sainz-Polo MÁ; Marina A; Guerin ME
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):14853-14857. PubMed ID: 28960760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retaining glycosyltransferase mechanism studied by QM/MM methods: lipopolysaccharyl-α-1,4-galactosyltransferase C transfers α-galactose via an oxocarbenium ion-like transition state.
    Gómez H; Polyak I; Thiel W; Lluch JM; Masgrau L
    J Am Chem Soc; 2012 Mar; 134(10):4743-52. PubMed ID: 22352786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quick-soaking of crystals reveals unprecedented insights into the catalytic mechanism of glycosyltransferases.
    Albesa-Jové D; Cifuente JO; Trastoy B; Guerin ME
    Methods Enzymol; 2019; 621():261-279. PubMed ID: 31128783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosyltransferase mechanisms: impact of a 5-fluoro substituent in acceptor and donor substrates on catalysis.
    Hartman MC; Jiang S; Rush JS; Waechter CJ; Coward JK
    Biochemistry; 2007 Oct; 46(41):11630-8. PubMed ID: 17883281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of unnatural sugar nucleotides and their evaluation as donor substrates in glycosyltransferase-catalyzed reactions.
    Khaled A; Ivannikova T; Augé C
    Carbohydr Res; 2004 Nov; 339(16):2641-9. PubMed ID: 15519322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leloir glycosyltransferases of natural product C-glycosylation: structure, mechanism and specificity.
    Tegl G; Nidetzky B
    Biochem Soc Trans; 2020 Aug; 48(4):1583-1598. PubMed ID: 32657344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive enzymatic characterization of glycosyltransferases with a beta3GT or beta4GT motif.
    Togayachi A; Sato T; Narimatsu H
    Methods Enzymol; 2006; 416():91-102. PubMed ID: 17113861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosyltransferase activity can be selectively modulated by chemical modifications of acceptor substrates.
    Galan MC; Dodson CS; Venot AP; Boons GJ
    Bioorg Med Chem Lett; 2004 May; 14(9):2205-8. PubMed ID: 15081009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution.
    Williams GJ; Zhang C; Thorson JS
    Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanism for bistability in glycosylation.
    McDonald AG; Tipton KF; Davey GP
    PLoS Comput Biol; 2018 Aug; 14(8):e1006348. PubMed ID: 30074989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic investigation of the synthetic utility of glycopeptide glycosyltransferases.
    Oberthür M; Leimkuhler C; Kruger RG; Lu W; Walsh CT; Kahne D
    J Am Chem Soc; 2005 Aug; 127(30):10747-52. PubMed ID: 16045364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of Medicago truncatula UGT85H2--insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase.
    Li L; Modolo LV; Escamilla-Trevino LL; Achnine L; Dixon RA; Wang X
    J Mol Biol; 2007 Jul; 370(5):951-63. PubMed ID: 17553523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring specificity of glycosyltransferases: synthesis of new sugar nucleotide related molecules as putative donor substrates.
    Khaled A; Piotrowska O; Dominiak K; Augé C
    Carbohydr Res; 2008 Feb; 343(2):167-78. PubMed ID: 18048019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism.
    Schuman B; Evans SV; Fyles TM
    PLoS One; 2013; 8(8):e71077. PubMed ID: 23936487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of glycosyl fluorides in the study on glycosidases].
    Lu LL; Xiao M; Zhao H; Wang P; Qian XM
    Sheng Wu Gong Cheng Xue Bao; 2006 May; 22(3):351-60. PubMed ID: 16755910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Native Ternary Complex Trapped in a Crystal Reveals the Catalytic Mechanism of a Retaining Glycosyltransferase.
    Albesa-Jové D; Mendoza F; Rodrigo-Unzueta A; Gomollón-Bel F; Cifuente JO; Urresti S; Comino N; Gómez H; Romero-García J; Lluch JM; Sancho-Vaello E; Biarnés X; Planas A; Merino P; Masgrau L; Guerin ME
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):9898-902. PubMed ID: 26136334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions.
    Zhang C; Griffith BR; Fu Q; Albermann C; Fu X; Lee IK; Li L; Thorson JS
    Science; 2006 Sep; 313(5791):1291-4. PubMed ID: 16946071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.