These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17221144)

  • 1. A dual-process integrator-resonator model of the electrically stimulated human auditory nerve.
    Macherey O; Carlyon RP; van Wieringen A; Wouters J
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):84-104. PubMed ID: 17221144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of Gaussian noise on the threshold, dynamic range, and loudness of analogue cochlear implant stimuli.
    Morse RP; Morse PF; Nunn TB; Archer KA; Boyle P
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):42-53. PubMed ID: 17160638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The polarity sensitivity of the electrically stimulated human auditory nerve measured at the level of the brainstem.
    Undurraga JA; Carlyon RP; Wouters J; van Wieringen A
    J Assoc Res Otolaryngol; 2013 Jun; 14(3):359-77. PubMed ID: 23479187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory nerve responses to monophasic and biphasic electric stimuli.
    Miller CA; Robinson BK; Rubinstein JT; Abbas PJ; Runge-Samuelson CL
    Hear Res; 2001 Jan; 151(1-2):79-94. PubMed ID: 11124454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the threshold of single-pulse electrical stimuli using a stochastic auditory nerve model: the effects of noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):825-35. PubMed ID: 12848350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparisons between neural response imaging thresholds, electrically evoked auditory reflex thresholds and most comfortable loudness levels in CII bionic ear users with HiResolution sound processing strategies.
    Han DM; Chen XQ; Zhao XT; Kong Y; Li YX; Liu S; Liu B; Mo LY
    Acta Otolaryngol; 2005 Jul; 125(7):732-5. PubMed ID: 16012035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation.
    Carlyon RP; van Wieringen A; Deeks JM; Long CJ; Lyzenga J; Wouters J
    Hear Res; 2005 Jul; 205(1-2):210-24. PubMed ID: 15953530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of a purely conductance-based stochastic nerve fibre model as applied to compound models of populations of human auditory nerve fibres used in cochlear implant simulations.
    Badenhorst W; Hanekom T; Hanekom JJ
    Biol Cybern; 2017 Dec; 111(5-6):439-458. PubMed ID: 29063191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychophysical measures from electrical stimulation of the human cochlear nucleus.
    Shannon RV; Otto SR
    Hear Res; 1990 Aug; 47(1-2):159-68. PubMed ID: 2228792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the Relative Timing between Same-Polarity Pulses on Thresholds and Loudness in Cochlear Implant Users.
    Guérit F; Marozeau J; Epp B; Carlyon RP
    J Assoc Res Otolaryngol; 2020 Dec; 21(6):497-510. PubMed ID: 32833160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Psychophysical laws revealed by electric hearing.
    Zeng FG; Shannon RV
    Neuroreport; 1999 Jun; 10(9):1931-5. PubMed ID: 10501535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.
    Chua TE; Bachman M; Zeng FG
    Ear Hear; 2011; 32(6):679-89. PubMed ID: 21610498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Pulse Polarity on Thresholds and on Non-monotonic Loudness Growth in Cochlear Implant Users.
    Macherey O; Carlyon RP; Chatron J; Roman S
    J Assoc Res Otolaryngol; 2017 Jun; 18(3):513-527. PubMed ID: 28138791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Threshold functions for electrical stimulation of the human cochlear nucleus.
    Shannon RV
    Hear Res; 1989 Jun; 40(1-2):173-7. PubMed ID: 2768080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation.
    Bruce IC; White MW; Irlicht LS; O'Leary SJ; Clark GM
    IEEE Trans Biomed Eng; 1999 Dec; 46(12):1393-404. PubMed ID: 10612897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal processing in the auditory system: insights from cochlear and auditory midbrain implantees.
    McKay CM; Lim HH; Lenarz T
    J Assoc Res Otolaryngol; 2013 Feb; 14(1):103-24. PubMed ID: 23073669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renewal-process approximation of a stochastic threshold model for electrical neural stimulation.
    Bruce IC; Irlicht LS; White MW; O'Leary SJ; Clark GM
    J Comput Neurosci; 2000; 9(2):119-32. PubMed ID: 11030517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.