BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17221854)

  • 1. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.
    Gieseler H; Kessler WJ; Finson M; Davis SJ; Mulhall PA; Bons V; Debo DJ; Pikal MJ
    J Pharm Sci; 2007 Jul; 96(7):1776-93. PubMed ID: 17221854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive product temperature determination during primary drying using tunable diode laser absorption spectroscopy.
    Schneid SC; Gieseler H; Kessler WJ; Pikal MJ
    J Pharm Sci; 2009 Sep; 98(9):3406-18. PubMed ID: 18781643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of dryer load on freeze drying process design.
    Patel SM; Jameel F; Pikal MJ
    J Pharm Sci; 2010 Oct; 99(10):4363-79. PubMed ID: 20737639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model.
    Kuu WY; O'Bryan KR; Hardwick LM; Paul TW
    Pharm Dev Technol; 2011 Aug; 16(4):343-57. PubMed ID: 20387998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Mini-Freeze Dryer for Material-Sparing Laboratory Processing with Representative Product Temperature History.
    Obeidat WM; Sahni E; Kessler W; Pikal M
    AAPS PharmSciTech; 2018 Feb; 19(2):599-609. PubMed ID: 28905327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2006 Apr; 313(1-2):99-113. PubMed ID: 16513303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.
    Ganguly A; Alexeenko AA; Schultz SG; Kim SG
    Eur J Pharm Biopharm; 2013 Oct; 85(2):223-35. PubMed ID: 23748132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the freeze-drying cycle: adaptation of the pressure rise analysis model to non-instantaneous isolation valves.
    Chouvenc P; Vessot S; Andrieu J; Vacus P
    PDA J Pharm Sci Technol; 2005; 59(5):298-309. PubMed ID: 16316065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of fluid dynamics in pharmaceutical freeze-drying.
    Alexeenko AA; Ganguly A; Nail SL
    J Pharm Sci; 2009 Sep; 98(9):3483-94. PubMed ID: 19569225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.
    Awotwe Otoo D; Agarabi C; Khan MA
    J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of the Tunable Diode Laser Absorption Spectroscopy: In-Process Estimation of Primary Drying Heterogeneity and Product Temperature During Lyophilization.
    Sharma P; Kessler WJ; Bogner R; Thakur M; Pikal MJ
    J Pharm Sci; 2019 Jan; 108(1):416-430. PubMed ID: 30114403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).
    Kuu WY; Nail SL
    J Pharm Sci; 2009 Sep; 98(9):3469-82. PubMed ID: 19504575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recommended Best Practices for Process Monitoring Instrumentation in Pharmaceutical Freeze Drying-2017.
    Nail S; Tchessalov S; Shalaev E; Ganguly A; Renzi E; Dimarco F; Wegiel L; Ferris S; Kessler W; Pikal M; Sacha G; Alexeenko A; Thompson TN; Reiter C; Searles J; Coiteux P
    AAPS PharmSciTech; 2017 Oct; 18(7):2379-2393. PubMed ID: 28205144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.
    Sane P; Varma N; Ganguly A; Pikal M; Alexeenko A; Bogner RH
    AAPS PharmSciTech; 2017 Feb; 18(2):369-380. PubMed ID: 26989063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying.
    Kuu WY; Nail SL; Sacha G
    J Pharm Sci; 2009 Mar; 98(3):1136-54. PubMed ID: 18683861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.
    Tang XC; Nail SL; Pikal MJ
    Pharm Res; 2005 Apr; 22(4):685-700. PubMed ID: 15889467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Jan; 96(1):61-70. PubMed ID: 17031859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.