BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 17221888)

  • 1. Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen.
    Reddy N; Yang Y
    Biotechnol Bioeng; 2007 Aug; 97(5):1021-7. PubMed ID: 17221888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks.
    Reddy N; Yang Y
    Bioresour Technol; 2009 Jul; 100(14):3563-9. PubMed ID: 19327987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural cellulose fibers from soybean straw.
    Reddy N; Yang Y
    Bioresour Technol; 2009 Jul; 100(14):3593-8. PubMed ID: 19345577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems.
    Reddy N; Yang Y
    Bioresour Technol; 2008 May; 99(7):2449-54. PubMed ID: 17583497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of long natural cellulose fibers from wheat straw.
    Reddy N; Yang Y
    J Agric Food Chem; 2007 Oct; 55(21):8570-5. PubMed ID: 17894459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems.
    Reddy N; Yang Y
    J Agric Food Chem; 2007 Jul; 55(14):5569-74. PubMed ID: 17579436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of high-quality long natural cellulose fibers from rice straw.
    Reddy N; Yang Y
    J Agric Food Chem; 2006 Oct; 54(21):8077-81. PubMed ID: 17032012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass characterization of morphological portions of alamo switchgrass.
    Hu Z; Foston MB; Ragauskas AJ
    J Agric Food Chem; 2011 Jul; 59(14):7765-72. PubMed ID: 21714578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses.
    Ai J; Tschirner U
    Bioresour Technol; 2010 Jan; 101(1):215-21. PubMed ID: 19720527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies on hydrothermal pretreatment and enzymatic saccharification of leaves and internodes of alamo switchgrass.
    Hu Z; Foston M; Ragauskas AJ
    Bioresour Technol; 2011 Jul; 102(14):7224-8. PubMed ID: 21571525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and surface properties of fibrous and ground cellulosic substrates.
    Csiszár E; Fekete E
    Langmuir; 2011 Jul; 27(13):8444-50. PubMed ID: 21657257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass.
    Singh S; Simmons BA; Vogel KP
    Biotechnol Bioeng; 2009 Sep; 104(1):68-75. PubMed ID: 19489027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, characterization, and quantification of steroidal saponins in switchgrass (Panicum virgatum L.).
    Lee ST; Mitchell RB; Wang Z; Heiss C; Gardner DR; Azadi P
    J Agric Food Chem; 2009 Mar; 57(6):2599-604. PubMed ID: 19243100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switchgrass water extracts: extraction, separation and biological activity of rutin and quercitrin.
    Uppugundla N; Engelberth A; Vandhana Ravindranath S; Clausen EC; Lay JO; Gidden J; Carrier DJ
    J Agric Food Chem; 2009 Sep; 57(17):7763-70. PubMed ID: 19691281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass.
    Sathitsuksanoh N; Zhu Z; Wi S; Zhang YH
    Biotechnol Bioeng; 2011 Mar; 108(3):521-9. PubMed ID: 20967803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production.
    Hallac BB; Sannigrahi P; Pu Y; Ray M; Murphy RJ; Ragauskas AJ
    J Agric Food Chem; 2009 Feb; 57(4):1275-81. PubMed ID: 19170631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites.
    Pommet M; Juntaro J; Heng JY; Mantalaris A; Lee AF; Wilson K; Kalinka G; Shaffer MS; Bismarck A
    Biomacromolecules; 2008 Jun; 9(6):1643-51. PubMed ID: 18491942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization.
    Cherian BM; Pothan LA; Nguyen-Chung T; Mennig G; Kottaisamy M; Thomas S
    J Agric Food Chem; 2008 Jul; 56(14):5617-27. PubMed ID: 18570426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.
    Ruan D; Zhang L; Zhou J; Jin H; Chen H
    Macromol Biosci; 2004 Dec; 4(12):1105-12. PubMed ID: 15586387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tassel removal positively affects biomass production coupled with significantly increasing stem digestibility in switchgrass.
    Zhao C; Fan X; Hou X; Zhu Y; Yue Y; Zhang S; Wu J
    PLoS One; 2015; 10(4):e0120845. PubMed ID: 25849123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.