BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17222013)

  • 61. Boron-doped diamond nano/microelectrodes for biosensing and in vitro measurements.
    Dong H; Wang S; Galligan JJ; Swain GM
    Front Biosci (Schol Ed); 2011 Jan; 3(2):518-40. PubMed ID: 21196394
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper.
    Dai X; Compton RG
    Analyst; 2006 Apr; 131(4):516-21. PubMed ID: 16568168
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing.
    Luo D; Wu L; Zhi J
    ACS Nano; 2009 Aug; 3(8):2121-8. PubMed ID: 19621936
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A sandwich structured SiO(2)/cytochrome c/SiO(2) on a boron-doped diamond film electrode as an electrochemical nitrite biosensor.
    Geng R; Zhao G; Liu M; Li M
    Biomaterials; 2008 Jun; 29(18):2794-801. PubMed ID: 18394698
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: influence of experimental parameters on degradation kinetics and mineralization efficiency.
    Ozcan A; Sahin Y; Koparal AS; Oturan MA
    Water Res; 2008 Jun; 42(12):2889-98. PubMed ID: 18377944
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Development of electrolyte-free ozone sensors using boron-doped diamond electrodes.
    Ishii Y; Ivandini TA; Murata K; Einaga Y
    Anal Chem; 2013 May; 85(9):4284-8. PubMed ID: 23544430
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Experimental and theoretical investigations on the adsorption of 2'-deoxyguanosine oxidation products at oxidized boron-doped diamond electrodes.
    Fortin E; Vieil E; Mailley P; Szunerits S; Livache T
    Anal Chem; 2007 May; 79(10):3741-6. PubMed ID: 17411007
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide.
    Guascito MR; Filippo E; Malitesta C; Manno D; Serra A; Turco A
    Biosens Bioelectron; 2008 Dec; 24(4):1063-9. PubMed ID: 18804993
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Adsorption of atomic hydrogen at a nanostructured electrode of polyacrylate-capped Pt nanoparticles in polyelectrolyte.
    Markarian MZ; El Harakeh M; Halaoui LI
    J Phys Chem B; 2005 Jun; 109(23):11616-21. PubMed ID: 16852426
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/L-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode.
    Yang G; Yuan R; Chai YQ
    Colloids Surf B Biointerfaces; 2008 Jan; 61(1):93-100. PubMed ID: 17855061
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Toward high-throughput screening of NAD(P)-dependent oxidoreductases using boron-doped diamond microelectrodes and microfluidic devices.
    Oyobiki R; Kato T; Katayama M; Sugitani A; Watanabe T; Einaga Y; Matsumoto Y; Horisawa K; Doi N
    Anal Chem; 2014 Oct; 86(19):9570-5. PubMed ID: 25211652
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 2-Dimensional micro-network of boron-doped diamond film: fabrication and electrochemical sensing application.
    Luo D; Wu L; Zhi J
    Chem Commun (Camb); 2010 Sep; 46(35):6488-90. PubMed ID: 20697657
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Properties of hybridized DNA arrays on single-crystalline undoped and boron-doped (100) diamonds studied by atomic force microscopy in electrolytes.
    Rezek B; Shin D; Nebel CE
    Langmuir; 2007 Jul; 23(14):7626-33. PubMed ID: 17547423
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells.
    La-Torre-Riveros L; Guzman-Blas R; Méndez-Torres AE; Prelas M; Tryk DA; Cabrera CR
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1134-47. PubMed ID: 22270177
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mechanism of enhanced electrochemical oxidation of 2,4-dichlorophenoxyacetic acid with in situ microwave activated boron-doped diamond and platinum anodes.
    Gao J; Zhao G; Liu M; Li D
    J Phys Chem A; 2009 Oct; 113(39):10466-73. PubMed ID: 19735119
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation.
    Cui SK; Guo DJ
    J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites.
    Cui HF; Ye JS; Zhang WD; Li CM; Luong JH; Sheu FS
    Anal Chim Acta; 2007 Jul; 594(2):175-83. PubMed ID: 17586112
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.
    Maybeck V; Edgington R; Bongrain A; Welch JO; Scorsone E; Bergonzo P; Jackman RB; Offenhäusser A
    Adv Healthc Mater; 2014 Feb; 3(2):283-9. PubMed ID: 23949946
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electrochemical grafting of boron-doped single-crystalline chemical vapor deposition diamond with nitrophenyl molecules.
    Uetsuka H; Shin D; Tokuda N; Saeki K; Nebel CE
    Langmuir; 2007 Mar; 23(6):3466-72. PubMed ID: 17291021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.