BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17222136)

  • 1. Bacterial degradation of airborne phenol in the phyllosphere.
    Sandhu A; Halverson LJ; Beattie GA
    Environ Microbiol; 2007 Feb; 9(2):383-92. PubMed ID: 17222136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and localization of gaseous phenol and p-cresol in plant leaves.
    Beattie GA; Seibel JR
    Chemosphere; 2007 Jun; 68(3):528-36. PubMed ID: 17280709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional assembly of bacterial communities with activity for the biodegradation of an organophosphorus pesticide in the rape phyllosphere.
    Ning J; Bai Z; Gang G; Jiang D; Hu Q; He J; Zhang H; Zhuang G
    FEMS Microbiol Lett; 2010 May; 306(2):135-43. PubMed ID: 20529133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horizontal transfer of genetic determinants for degradation of phenol between the bacteria living in plant and its rhizosphere.
    Wang Y; Xiao M; Geng X; Liu J; Chen J
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):733-9. PubMed ID: 17938913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities.
    Sandhu A; Halverson LJ; Beattie GA
    Microb Ecol; 2009 Feb; 57(2):276-85. PubMed ID: 19034559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds.
    Scheublin TR; Deusch S; Moreno-Forero SK; Müller JA; van der Meer JR; Leveau JH
    Environ Microbiol; 2014 Jul; 16(7):2212-25. PubMed ID: 24373130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaugmentation of the phyllosphere for the removal of toluene from indoor air.
    De Kempeneer L; Sercu B; Vanbrabant W; Van Langenhove H; Verstraete W
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):284-8. PubMed ID: 12910328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.
    Toyama T; Sei K; Yu N; Kumada H; Inoue D; Hoang H; Soda S; Chang YC; Kikuchi S; Fujita M; Ike M
    Water Res; 2009 Aug; 43(15):3765-76. PubMed ID: 19541342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa.
    Boldt TS; Sørensen J; Karlson U; Molin S; Ramos C
    FEMS Microbiol Ecol; 2004 May; 48(2):139-48. PubMed ID: 19712397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas stutzeri strain possessing a self-transmissible TOL-like plasmid degrades phenol and promotes maize growth in contaminated environments.
    Jiang Q; Zhou C; Wang Y; Si F; Zhou Y; Chen B; Zhao Y; Chen J; Xiao M
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3461-75. PubMed ID: 24549803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants.
    Yutthammo C; Thongthammachat N; Pinphanichakarn P; Luepromchai E
    Microb Ecol; 2010 Feb; 59(2):357-68. PubMed ID: 20107780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant-microorganisms interaction promotes removal of air pollutants in Milan (Italy) urban area.
    Franzetti A; Gandolfi I; Bestetti G; Padoa Schioppa E; Canedoli C; Brambilla D; Cappelletti D; Sebastiani B; Federici E; Papacchini M; Ambrosini R
    J Hazard Mater; 2020 Feb; 384():121021. PubMed ID: 31581017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors.
    Leedjärv A; Ivask A; Virta M; Kahru A
    Chemosphere; 2006 Sep; 64(11):1910-9. PubMed ID: 16581105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Phenol biodegradation by a Pseudomonas sp. strain tagged with the gfp gene].
    Adylova AT; Chernikova TN; Abdukarimov AA
    Prikl Biokhim Mikrobiol; 2008; 44(3):308-13. PubMed ID: 18663954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica.
    Fürnkranz M; Wanek W; Richter A; Abell G; Rasche F; Sessitsch A
    ISME J; 2008 May; 2(5):561-70. PubMed ID: 18273066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dynamics of bacteria from the phyllosphere and leaves of soy (Glycine max L. Merrill) in field conditions].
    Salerno CM; Montero MC; Sagardoy MA
    Rev Argent Microbiol; 1997; 29(3):122-30. PubMed ID: 9411487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol.
    Kwon KH; Yeom SH
    Bioprocess Biosyst Eng; 2009 Jun; 32(4):435-42. PubMed ID: 18825419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Degradation of hydrocarbons and their derivatives by a microbial association based on Canadian pondweed].
    Tumaĭkina IuA; Turkovskaia OV; Ignatov VV
    Prikl Biokhim Mikrobiol; 2008; 44(4):422-9. PubMed ID: 18924409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Processes of plant colonization by Methylobacterium strains and some bacterial properties ].
    Romanovskaia VA; Stoliar SM; Malashenko IuR; Dodatko TN
    Mikrobiologiia; 2001; 70(2):263-9. PubMed ID: 11386061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of the phenol-degrading bacterial community during the decomposition of submersed Platanus acerifolia leaves.
    Ramió-Pujol S; Bañeras L; Artigas J; Romaní AM
    FEMS Microbiol Lett; 2013 Jan; 338(2):184-91. PubMed ID: 23136943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.