These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 17222140)
21. Diversity of root-associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco. Robin A; Mazurier S; Mougel C; Vansuyt G; Corberand T; Meyer JM; Lemanceau P Environ Microbiol; 2007 Jul; 9(7):1724-37. PubMed ID: 17564606 [TBL] [Abstract][Full Text] [Related]
22. Antibacterial activity and mutagenesis of sponge-associated Pseudomonas fluorescens H41. Ye L; Santos-Gandelman JF; Hardoim CC; George I; Cornelis P; Laport MS Antonie Van Leeuwenhoek; 2015 Jul; 108(1):117-26. PubMed ID: 25957971 [TBL] [Abstract][Full Text] [Related]
23. A cytochrome c biogenesis gene involved in pyoverdine production in Pseudomonas fluorescens ATCC 17400. Gaballa A; Koedam N; Cornelis P Mol Microbiol; 1996 Aug; 21(4):777-85. PubMed ID: 8878040 [TBL] [Abstract][Full Text] [Related]
24. Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Matilla MA; Ramos JL; Duque E; de Dios Alché J; Espinosa-Urgel M; Ramos-González MI Environ Microbiol; 2007 Jul; 9(7):1842-50. PubMed ID: 17564617 [TBL] [Abstract][Full Text] [Related]
25. The structure-activity relationship of ferric pyoverdine bound to its outer membrane transporter: implications for the mechanism of iron uptake. Schons V; Atkinson RA; Dugave C; Graff R; Mislin GL; Rochet L; Hennard C; Kieffer B; Abdallah MA; Schalk IJ Biochemistry; 2005 Nov; 44(43):14069-79. PubMed ID: 16245923 [TBL] [Abstract][Full Text] [Related]
26. Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens. Rossbach S; Wilson TL; Kukuk ML; Carty HA FEMS Microbiol Lett; 2000 Oct; 191(1):61-70. PubMed ID: 11004401 [TBL] [Abstract][Full Text] [Related]
27. Influence of siderophore pyoverdine synthesis and iron-uptake on abiotic and biotic surface colonization of Pseudomonas putida S11. Ponraj P; Shankar M; Ilakkiam D; Gunasekaran P Biometals; 2012 Dec; 25(6):1113-28. PubMed ID: 22821204 [TBL] [Abstract][Full Text] [Related]
28. Ornicorrugatin, a new siderophore from Pseudomonas fluorescens AF76. Matthijs S; Budzikiewicz H; Schäfer M; Wathelet B; Cornelis P Z Naturforsch C J Biosci; 2008; 63(1-2):8-12. PubMed ID: 18386480 [TBL] [Abstract][Full Text] [Related]
29. Resistance to vanadium in Pseudomonas fluorescens ATCC 17400 caused by mutations in TCA cycle enzymes. Denayer S; Matthijs S; Cornelis P FEMS Microbiol Lett; 2006 Nov; 264(1):59-64. PubMed ID: 17020548 [TBL] [Abstract][Full Text] [Related]
30. Predictive modeling of siderphore production by Pseudomonas fluorescens under iron limitation. Fgaier H; Feher B; McKellar RC; Eberl HJ J Theor Biol; 2008 Mar; 251(2):348-62. PubMed ID: 18191154 [TBL] [Abstract][Full Text] [Related]
31. Pyoverdine siderophores: from biogenesis to biosignificance. Visca P; Imperi F; Lamont IL Trends Microbiol; 2007 Jan; 15(1):22-30. PubMed ID: 17118662 [TBL] [Abstract][Full Text] [Related]
32. Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. Mercado-Blanco J; van der Drift KM; Olsson PE; Thomas-Oates JE; van Loon LC; Bakker PA J Bacteriol; 2001 Mar; 183(6):1909-20. PubMed ID: 11222588 [TBL] [Abstract][Full Text] [Related]
33. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. Nielsen TH; Christophersen C; Anthoni U; Sørensen J J Appl Microbiol; 1999 Jul; 87(1):80-90. PubMed ID: 10432590 [TBL] [Abstract][Full Text] [Related]
34. [Isolation, identification and over- siderophores production of Pseudomonas fluorescens sp-f]. Zhao X; Chen SX; Xie ZX; Shen P Wei Sheng Wu Xue Bao; 2006 Oct; 46(5):691-5. PubMed ID: 17172011 [TBL] [Abstract][Full Text] [Related]
35. Regulation of the iron uptake genes in Pseudomonas fluorescens M114 by pseudobactin M114: the pbrA sigma factor gene does not mediate the siderophore regulatory response. Callanan M; Sexton R; Dowling DN; O'Gara F FEMS Microbiol Lett; 1996 Oct; 144(1):61-6. PubMed ID: 8870253 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of matrix metalloproteinase-2 activity by siderophores of Pseudomonas species. Shinozaki Y; Akutsu-Shigeno Y; Nakajima-Kambe T; Inomata S; Nomura N; Nakahara T; Uchiyama H Appl Microbiol Biotechnol; 2004 Jun; 64(6):840-7. PubMed ID: 14727091 [TBL] [Abstract][Full Text] [Related]
37. Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Hamdan H; Weller DM; Thomashow LS Appl Environ Microbiol; 1991 Nov; 57(11):3270-7. PubMed ID: 1838240 [TBL] [Abstract][Full Text] [Related]
38. Loss of the oxidative stress regulator OxyR in Pseudomonas aeruginosa PAO1 impairs growth under iron-limited conditions. Vinckx T; Matthijs S; Cornelis P FEMS Microbiol Lett; 2008 Nov; 288(2):258-65. PubMed ID: 19054085 [TBL] [Abstract][Full Text] [Related]
39. The role of the siderophore pyridine-2,6-bis (thiocarboxylic acid) (PDTC) in zinc utilization by Pseudomonas putida DSM 3601. Leach LH; Morris JC; Lewis TA Biometals; 2007 Oct; 20(5):717-26. PubMed ID: 17066327 [TBL] [Abstract][Full Text] [Related]
40. Nonribosomal peptide synthase is responsible for the biosynthesis of siderophore in Vibrio vulnificus MO6-24/O. Kim IH; Shim JI; Lee KE; Hwang W; Kim IJ; Choi SH; Kim KS J Microbiol Biotechnol; 2008 Jan; 18(1):35-42. PubMed ID: 18239413 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]