These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 17222145)
21. Rice roots select for type I methanotrophs in rice field soil. Wu L; Ma K; Lu Y Syst Appl Microbiol; 2009 Sep; 32(6):421-8. PubMed ID: 19481894 [TBL] [Abstract][Full Text] [Related]
22. Microbial community dynamics associated with rhizosphere carbon flow. Butler JL; Williams MA; Bottomley PJ; Myrold DD Appl Environ Microbiol; 2003 Nov; 69(11):6793-800. PubMed ID: 14602642 [TBL] [Abstract][Full Text] [Related]
23. Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil. Su YH; Yang XY Sci Total Environ; 2009 Jan; 407(3):1027-34. PubMed ID: 19000632 [TBL] [Abstract][Full Text] [Related]
24. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. Yao H; Wu F FEMS Microbiol Ecol; 2010 Jun; 72(3):456-63. PubMed ID: 20370829 [TBL] [Abstract][Full Text] [Related]
25. Sulfate-reducing bacteria in rice field soil and on rice roots. Wind T; Stubner S; Conrad R Syst Appl Microbiol; 1999 May; 22(2):269-79. PubMed ID: 10390878 [TBL] [Abstract][Full Text] [Related]
26. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Somenahally AC; Hollister EB; Yan W; Gentry TJ; Loeppert RH Environ Sci Technol; 2011 Oct; 45(19):8328-35. PubMed ID: 21870848 [TBL] [Abstract][Full Text] [Related]
27. Using phospholipid fatty acid technique to study short-term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere. Johansen A; Olsson S Microb Ecol; 2005 Feb; 49(2):272-81. PubMed ID: 15965726 [TBL] [Abstract][Full Text] [Related]
28. Functional characterization of antagonistic fluorescent pseudomonads associated with rhizospheric soil of rice (Oryza sativa L.). Ayyadurai N; Naik PR; Sakthivel N J Microbiol Biotechnol; 2007 Jun; 17(6):919-27. PubMed ID: 18050909 [TBL] [Abstract][Full Text] [Related]
29. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Li YL; Fan XR; Shen QR Plant Cell Environ; 2008 Jan; 31(1):73-85. PubMed ID: 17944815 [TBL] [Abstract][Full Text] [Related]
30. Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Roslev P; Iversen N Appl Environ Microbiol; 1999 Sep; 65(9):4064-70. PubMed ID: 10473417 [TBL] [Abstract][Full Text] [Related]
31. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. Scheid D; Stubner S; Conrad R FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368 [TBL] [Abstract][Full Text] [Related]
32. Unraveling the effects of management regime and plant species on soil organic carbon and microbial phospholipid fatty acid profiles in grassland soils. Patra AK; Le Roux X; Grayston SJ; Loiseau P; Louault F Bioresour Technol; 2008 Jun; 99(9):3545-51. PubMed ID: 17826981 [TBL] [Abstract][Full Text] [Related]
33. Different selective effects on rhizosphere bacteria exerted by genetically modified versus conventional potato lines. Dias AC; Dini-Andreote F; Hannula SE; Andreote FD; Pereira E Silva Mde C; Salles JF; de Boer W; van Veen J; van Elsas JD PLoS One; 2013; 8(7):e67948. PubMed ID: 23844136 [TBL] [Abstract][Full Text] [Related]
34. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils. Yao HY; Liu YY; Xue D; Huang CY J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647 [TBL] [Abstract][Full Text] [Related]
35. Microbial arsenic methylation in soil and rice rhizosphere. Jia Y; Huang H; Zhong M; Wang FH; Zhang LM; Zhu YG Environ Sci Technol; 2013 Apr; 47(7):3141-8. PubMed ID: 23469919 [TBL] [Abstract][Full Text] [Related]
36. Stable Isotope Probing of Microbiota Structure and Function in the Plant Rhizosphere. Achouak W; Haichar FEZ Methods Mol Biol; 2019; 2046():233-243. PubMed ID: 31407309 [TBL] [Abstract][Full Text] [Related]
37. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. Kim MC; Ahn JH; Shin HC; Kim T; Ryu TH; Kim DH; Song HG; Lee GH; Ka JO J Microbiol Biotechnol; 2008 Feb; 18(2):207-18. PubMed ID: 18309263 [TBL] [Abstract][Full Text] [Related]
38. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
39. [Ozone effects on soil microbial community of rice investigated by 13C isotope labeling]. Chen Z; Wang XK; Shang H Huan Jing Ke Xue; 2014 Oct; 35(10):3911-7. PubMed ID: 25693401 [TBL] [Abstract][Full Text] [Related]
40. Biodiversity of rice (Oryza sativa L.) and sugarcane (Saccharum officinarum L.) rhizosphere pseudomonads. Rameshkumar N; Arasu VT; Gunasekaran P Indian J Exp Biol; 2005 Jan; 43(1):84-9. PubMed ID: 15691070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]