These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17222181)

  • 1. Modular metabolic control analysis of large responses.
    Acerenza L; Ortega F
    FEBS J; 2007 Jan; 274(1):188-201. PubMed ID: 17222181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elasticity analysis and design for large metabolic responses produced by changes in enzyme activities.
    Ortega F; Acerenza L
    Biochem J; 2002 Oct; 367(Pt 1):41-8. PubMed ID: 12084013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular metabolic control analysis of large responses in branched systems--application to aspartate metabolism.
    Ortega F; Acerenza L
    FEBS J; 2011 Jul; 278(14):2565-78. PubMed ID: 21592306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of large metabolic responses. Constraints and sensitivity analysis.
    Acerenza L
    J Theor Biol; 2000 Nov; 207(2):265-82. PubMed ID: 11034833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic properties required for sustained or paradoxical control of metabolic fluxes under large changes in enzyme activities.
    Ortega F; Cascante M; Acerenza L
    J Theor Biol; 2008 Jun; 252(3):569-73. PubMed ID: 18045618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic control analysis for large changes: extension to variable elasticity coefficients.
    Acerenza L; Ortega F
    Syst Biol (Stevenage); 2006 Sep; 153(5):323-6. PubMed ID: 16986308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.
    Yoon J; Si Y; Nolan R; Lee K
    Bioinformatics; 2007 Sep; 23(18):2433-40. PubMed ID: 17660208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A second-order approach to metabolic control analysis.
    Höfer T; Heinrich R
    J Theor Biol; 1993 Sep; 164(1):85-102. PubMed ID: 8264245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular kinetic analysis reveals differences in Cd2+ and Cu2+ ion-induced impairment of oxidative phosphorylation in liver.
    Ciapaite J; Nauciene Z; Baniene R; Wagner MJ; Krab K; Mildaziene V
    FEBS J; 2009 Jul; 276(13):3656-68. PubMed ID: 19496816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation and control in complex, dynamic metabolic systems: experimental application of the top-down approaches of metabolic control analysis to fatty acid oxidation and ketogenesis.
    Krauss S; Quant PA
    J Theor Biol; 1996 Oct; 182(3):381-8. PubMed ID: 8944171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale and modular analysis of cardiac energy metabolism: repairing the broken interfaces of isolated system components.
    Van Beek JH
    Ann N Y Acad Sci; 2008 Mar; 1123():155-68. PubMed ID: 18375588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules.
    Saez-Rodriguez J; Gayer S; Ginkel M; Gilles ED
    Bioinformatics; 2008 Aug; 24(16):i213-9. PubMed ID: 18689828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of bioreactor using metabolic control analysis approach.
    Konde KS; Modak JM
    Biotechnol Prog; 2007; 23(2):370-80. PubMed ID: 17330959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo modular control analysis of energy metabolism in contracting skeletal muscle.
    Arsac LM; Beuste C; Miraux S; Deschodt-Arsac V; Thiaudiere E; Franconi JM; Diolez PH
    Biochem J; 2008 Sep; 414(3):391-7. PubMed ID: 18498244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computer model of gluconeogenesis and lipid metabolism in the perfused liver.
    Chalhoub E; Hanson RW; Belovich JM
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1676-86. PubMed ID: 17911349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic control theory: the geometry of the triangle.
    Mazat JP; Letellier T; Reder C
    Biomed Biochim Acta; 1990; 49(8-9):801-10. PubMed ID: 2082923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of enzyme activities into metabolic flux distributions by elementary mode analysis.
    Kurata H; Zhao Q; Okuda R; Shimizu K
    BMC Syst Biol; 2007 Jul; 1():31. PubMed ID: 17640350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.