BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 17222510)

  • 1. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode.
    Wang B; Kong W; Ma H
    J Hazard Mater; 2007 Jul; 146(1-2):295-301. PubMed ID: 17222510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes.
    Lin H; Niu J; Ding S; Zhang L
    Water Res; 2012 May; 46(7):2281-9. PubMed ID: 22381981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode.
    Li D; Tang J; Zhou X; Li J; Sun X; Shen J; Wang L; Han W
    Chemosphere; 2016 Apr; 149():49-56. PubMed ID: 26849194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Electrochemical oxidation of ammonia nitrogen wastewater using Ti/RuO2-TiO2-IrO2-SnO2 electrode].
    Xu LL; Shi HC; Chen JL
    Huan Jing Ke Xue; 2007 Sep; 28(9):2009-13. PubMed ID: 17990548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high activity of Ti/SnO2-Sb electrode in the electrochemical degradation of 2,4-dichlorophenol in aqueous solution.
    Niu J; Maharana D; Xu J; Chai Z; Bao Y
    J Environ Sci (China); 2013 Jul; 25(7):1424-30. PubMed ID: 24218856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal decomposition based fabrication of dimensionally stable Ti/SnO
    Chen S; Zhou L; Yang T; He Q; Zhou P; He P; Dong F; Zhang H; Jia B
    Chemosphere; 2020 Dec; 261():128201. PubMed ID: 33113663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode.
    Zaggout FR; Abu Ghalwa N
    J Environ Manage; 2008 Jan; 86(1):291-6. PubMed ID: 17287071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical degradation of m-cresol using porous carbon-nanotube-containing cathode and Ti/SnO2-Sb2O5-IrO2 anode: kinetics, byproducts and biodegradability.
    Chu Y; Zhang D; Liu L; Qian Y; Li L
    J Hazard Mater; 2013 May; 252-253():306-12. PubMed ID: 23548920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes.
    Kong W; Wang B; Ma H; Gu L
    J Hazard Mater; 2006 Oct; 137(3):1532-7. PubMed ID: 16730897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficient treatment of wastewater contained the carcinogen naphthylamine by electrochemical oxidation with γ-Al2O3 supported MnO2 and Sb-doped SnO2 catalyst.
    Chen F; Yu S; Dong X; Zhang S
    J Hazard Mater; 2012 Aug; 227-228():474-9. PubMed ID: 22652320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Degradation of Rhodamine B over Ti/SnO2-Sb Electrode.
    Maharana D; Niu J; Gao D; Xu Z; Shi J
    Water Environ Res; 2015 Apr; 87(4):304-11. PubMed ID: 26462074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive study on the electrocatalytic degradation, electrochemical behavior and degradation mechanism of malachite green using electrodeposited nanostructured β-PbO
    Ansari A; Nematollahi D
    Water Res; 2018 Nov; 144():462-473. PubMed ID: 30075442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.
    Maharana D; Xu Z; Niu J; Rao NN
    Chemosphere; 2015 Oct; 136():145-52. PubMed ID: 25981800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of Ti/SnO(2)-Sb(2)O(3)-Nb(2)O(5)/PbO(2) thin film as electrode material for the degradation of phenol.
    Yang X; Zou R; Huo F; Cai D; Xiao D
    J Hazard Mater; 2009 May; 164(1):367-73. PubMed ID: 18799264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the anodic oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/SnO2-Sb/PbO2 electrodes.
    Song S; Zhan L; He Z; Lin L; Tu J; Zhang Z; Chen J; Xu L
    J Hazard Mater; 2010 Mar; 175(1-3):614-21. PubMed ID: 19914775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined technology for clomazone herbicide wastewater treatment: three-dimensional packed-bed electrochemical oxidation and biological contact degradation.
    Feng Y; Liu J; Zhu L; Wei J
    Water Sci Technol; 2013; 68(1):257-60. PubMed ID: 23823563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes.
    Li XY; Cui YH; Feng YJ; Xie ZM; Gu JD
    Water Res; 2005 May; 39(10):1972-81. PubMed ID: 15882890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of the pesticide atrazine at DSA electrodes.
    Malpass GR; Miwa DW; Machado SA; Olivi P; Motheo AJ
    J Hazard Mater; 2006 Sep; 137(1):565-72. PubMed ID: 16621259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the electrochemical degradation of reactive orange 84 with Ti/IrO
    Pacheco-Álvarez M; Fuentes-Ramírez R; Brillas E; Peralta-Hernández JM
    Chemosphere; 2023 Oct; 339():139666. PubMed ID: 37532204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of heat treatment on the electrocatalytic activity of SnO2/Ti anode in degradation of p-benzoquinone].
    Yan JZ; Qu JH; Sun ZM; Li M; Liu RP
    Huan Jing Ke Xue; 2004 Jan; 25(1):30-4. PubMed ID: 15330416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.