These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 17222554)
1. The utilization of beet molasses as a novel carbon source for cephalosporin C production by Acremonium chrysogenum: Optimization of process parameters through statistical experimental designs. Lotfy WA Bioresour Technol; 2007 Dec; 98(18):3491-8. PubMed ID: 17222554 [TBL] [Abstract][Full Text] [Related]
2. Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. Lotfy WA; Ghanem KM; El-Helow ER Bioresour Technol; 2007 Dec; 98(18):3470-7. PubMed ID: 17317159 [TBL] [Abstract][Full Text] [Related]
3. Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Cuadra T; Fernández FJ; Tomasini A; Barrios-González J Lett Appl Microbiol; 2008 Feb; 46(2):216-20. PubMed ID: 18028327 [TBL] [Abstract][Full Text] [Related]
4. Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35. Lee JH; Yoo HY; Yang X; Kim DS; Lee JH; Lee SK; Han SO; Kim SW Lett Appl Microbiol; 2017 Jan; 64(1):66-72. PubMed ID: 27736007 [TBL] [Abstract][Full Text] [Related]
5. Morphology and kinetics studies on cephalosporin C production by Cephalosporium acremonium M25 in a 30-l bioreactor using a mixture of inocula. Kim JH; Lim JS; Kim CH; Kim SW Lett Appl Microbiol; 2005; 40(5):307-11. PubMed ID: 15836730 [TBL] [Abstract][Full Text] [Related]
6. Quantitative metabolic flux analysis revealed uneconomical utilization of ATP and NADPH in Acremonium chrysogenum fed with soybean oil. Li J; Yang Y; Chu J; Huang M; Li L; Zhang X; Wang Y; Zhuang Y; Zhang S Bioprocess Biosyst Eng; 2010 Nov; 33(9):1119-29. PubMed ID: 20571830 [TBL] [Abstract][Full Text] [Related]
7. Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Chen ZM; Li Q; Liu HM; Yu N; Xie TJ; Yang MY; Shen P; Chen XD Appl Microbiol Biotechnol; 2010 Feb; 85(5):1353-60. PubMed ID: 19697022 [TBL] [Abstract][Full Text] [Related]
8. Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods. Jo JH; Lee DS; Park D; Choe WS; Park JM Bioresour Technol; 2008 Apr; 99(6):2061-6. PubMed ID: 17582761 [TBL] [Abstract][Full Text] [Related]
9. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. Wang X; Jin B J Biosci Bioeng; 2009 Feb; 107(2):138-44. PubMed ID: 19217551 [TBL] [Abstract][Full Text] [Related]
10. Defining an optimal carbon source/methionine feed strategy for growth and cephalosporin C formation by Cephalosporium acremonium. Vicik SM; Fedor AJ; Swartz RW Biotechnol Prog; 1990; 6(5):333-40. PubMed ID: 1366872 [TBL] [Abstract][Full Text] [Related]
11. Production and optimization studies of cephalosporin C by solid state fermentation. Ellaiah P; Premkumar J; Kanthachari PV; Adinarayana K Hindustan Antibiot Bull; 2002; 44(1-4):1-7. PubMed ID: 15061587 [TBL] [Abstract][Full Text] [Related]
12. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp]. Fang XN; Huang W; Xia LM Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126 [TBL] [Abstract][Full Text] [Related]
13. A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. Singh B; Satyanarayana T J Appl Microbiol; 2006 Aug; 101(2):344-52. PubMed ID: 16882141 [TBL] [Abstract][Full Text] [Related]
14. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Guo WQ; Ren NQ; Wang XJ; Xiang WS; Ding J; You Y; Liu BF Bioresour Technol; 2009 Feb; 100(3):1192-6. PubMed ID: 18793840 [TBL] [Abstract][Full Text] [Related]
15. Solid-state and submerged fermentations show different gene expression profiles in cephalosporin C production by Acremonium chrysogenum. López-Calleja AC; Cuadra T; Barrios-González J; Fierro F; Fernández FJ J Mol Microbiol Biotechnol; 2012; 22(2):126-34. PubMed ID: 22678076 [TBL] [Abstract][Full Text] [Related]
16. Effects of pretreated beet molasses on benzaldehyde lyase production by recombinant Escherichia coli BL21(DE3)pLySs. Calik P; Levent H J Appl Microbiol; 2009 Nov; 107(5):1536-41. PubMed ID: 19426259 [TBL] [Abstract][Full Text] [Related]
17. Medium optimization for the production of a novel bioflocculant from Halomonas sp. V3a' using response surface methodology. He J; Zhen Q; Qiu N; Liu Z; Wang B; Shao Z; Yu Z Bioresour Technol; 2009 Dec; 100(23):5922-7. PubMed ID: 19632109 [TBL] [Abstract][Full Text] [Related]
18. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. Altaf M; Venkateshwar M; Srijana M; Reddy G J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197 [TBL] [Abstract][Full Text] [Related]
19. Statistical media optimization for the biomass production of postharvest biocontrol yeast Rhodosporidium paludigenum. Wang P; Liu X; Wang Y; Ruan H; Zheng X Prep Biochem Biotechnol; 2011; 41(4):382-97. PubMed ID: 21967338 [TBL] [Abstract][Full Text] [Related]
20. Economical glucoamylase production by alginate-immobilized Thermomucor indicae-seudaticae in cane molasses medium. Kumar P; Satyanarayana T Lett Appl Microbiol; 2007 Oct; 45(4):392-7. PubMed ID: 17897381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]