These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 17223071)
1. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch. Yeagle PL; Bennett M; Lemaître V; Watts A Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071 [TBL] [Abstract][Full Text] [Related]
2. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Venturoli M; Smit B; Sperotto MM Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466 [TBL] [Abstract][Full Text] [Related]
3. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy. Caputo GA Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773 [TBL] [Abstract][Full Text] [Related]
4. The determinants of hydrophobic mismatch response for transmembrane helices. de Jesus AJ; Allen TW Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244 [TBL] [Abstract][Full Text] [Related]
5. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Harzer U; Bechinger B Biochemistry; 2000 Oct; 39(43):13106-14. PubMed ID: 11052662 [TBL] [Abstract][Full Text] [Related]
6. Structure, topology, and tilt of cell-signaling peptides containing nuclear localization sequences in membrane bilayers determined by solid-state NMR and molecular dynamics simulation studies. Ramamoorthy A; Kandasamy SK; Lee DK; Kidambi S; Larson RG Biochemistry; 2007 Jan; 46(4):965-75. PubMed ID: 17240980 [TBL] [Abstract][Full Text] [Related]
7. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
8. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(3):760-8. PubMed ID: 11170393 [TBL] [Abstract][Full Text] [Related]
9. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707 [TBL] [Abstract][Full Text] [Related]
10. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Ren J; Lew S; Wang Z; London E Biochemistry; 1997 Aug; 36(33):10213-20. PubMed ID: 9254619 [TBL] [Abstract][Full Text] [Related]
11. Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. Kim T; Im W Biophys J; 2010 Jul; 99(1):175-83. PubMed ID: 20655845 [TBL] [Abstract][Full Text] [Related]
12. Tryptophan-anchored transmembrane peptides promote formation of nonlamellar phases in phosphatidylethanolamine model membranes in a mismatch-dependent manner. van der Wel PC; Pott T; Morein S; Greathouse DV; Koeppe RE; Killian JA Biochemistry; 2000 Mar; 39(11):3124-33. PubMed ID: 10715134 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch. Kandasamy SK; Larson RG Biophys J; 2006 Apr; 90(7):2326-43. PubMed ID: 16428278 [TBL] [Abstract][Full Text] [Related]
15. Peptide nanopores and lipid bilayers: interactions by coarse-grained molecular-dynamics simulations. Klingelhoefer JW; Carpenter T; Sansom MS Biophys J; 2009 May; 96(9):3519-28. PubMed ID: 19413958 [TBL] [Abstract][Full Text] [Related]
16. Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. Sparr E; Ash WL; Nazarov PV; Rijkers DT; Hemminga MA; Tieleman DP; Killian JA J Biol Chem; 2005 Nov; 280(47):39324-31. PubMed ID: 16169846 [TBL] [Abstract][Full Text] [Related]
17. Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer. Hung HM; Nguyen VP; Ngo ST; Nguyen MT Biophys Chem; 2016 Oct; 217():1-7. PubMed ID: 27455027 [TBL] [Abstract][Full Text] [Related]
18. Bilayer thickness determines the alignment of model polyproline helices in lipid membranes. Kubyshkin V; Grage SL; Ulrich AS; Budisa N Phys Chem Chem Phys; 2019 Oct; 21(40):22396-22408. PubMed ID: 31577299 [TBL] [Abstract][Full Text] [Related]
19. Solid-state NMR and molecular dynamics characterization of cannabinoid receptor-1 (CB1) helix 7 conformational plasticity in model membranes. Tiburu EK; Bowman AL; Struppe JO; Janero DR; Avraham HK; Makriyannis A Biochim Biophys Acta; 2009 May; 1788(5):1159-67. PubMed ID: 19366584 [TBL] [Abstract][Full Text] [Related]
20. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling. Anbazhagan V; Schneider D Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]