BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 172233)

  • 1. The enzymatic basis of the selective action of cyclophosphamide.
    Cox PJ; Phillips BJ; Thomas P
    Cancer Res; 1975 Dec; 35(12):3755-61. PubMed ID: 172233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the selective action of cyclophosphamide (NSC-26271): Inactivation of the hydroxylated metabolite by tissue-soluble enzymes.
    Cox PJ; Phillips BJ; Thomas P
    Cancer Treat Rep; 1976 Apr; 60(4):321-6. PubMed ID: 179712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the mouse aldehyde dehydrogenases important in aldophosphamide detoxification.
    Manthey CL; Landkamer GJ; Sladek NE
    Cancer Res; 1990 Aug; 50(16):4991-5002. PubMed ID: 2379164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive metabolism of aromatic nitro compounds including carcinogens by rabbit liver preparations.
    Tatsumi K; Kitamura S; Narai N
    Cancer Res; 1986 Mar; 46(3):1089-93. PubMed ID: 3943085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between cyclophosphamide and doxorubicin metabolism in rats. II. Effect of cyclophosphamide on the aldoketoreductase system.
    Dodion P; Akman SR; Tamburini JM; Riggs CE; Colvin OM; Bachur NR
    J Pharmacol Exp Ther; 1986 Apr; 237(1):271-4. PubMed ID: 3514847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Alcohol dehydrogenase activity of the gastric mucosa following various ethanolic treatments in rats].
    de Saint-Blanquat G; Fritsch P; Derache R
    Pathol Biol (Paris); 1972 Mar; 20(5):249-53. PubMed ID: 4338397
    [No Abstract]   [Full Text] [Related]  

  • 7. Activities of cytosolic and microsomal drug oxidases of rat hepatocytes in primary culture.
    Sherratt AJ; Damani LA
    Drug Metab Dispos; 1989; 17(1):20-5. PubMed ID: 2566464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of aldehyde dehydrogenase in the metabolism-dependent biological activity of cyclophosphamide.
    Hipkens JH; Struck RF; Gurtoo HL
    Cancer Res; 1981 Sep; 41(9 Pt 1):3571-83. PubMed ID: 7260916
    [No Abstract]   [Full Text] [Related]  

  • 9. Postnatal development of acetohexamide reductase activities in microsomes and cytosol of rat liver.
    Imamura Y; Torigoe M; Yanachi Y; Higuchi T; Otagiri M
    Res Commun Chem Pathol Pharmacol; 1991 May; 72(2):223-30. PubMed ID: 1876753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD(P)-linked aromatic aldehydes preferring cytoplasmic aldehyde dehydrogenases in the rat. Constitutive and inducible forms in liver, lung, stomach and intestinal mucosa.
    Koivusalo M; Aarnio M; Baumann M; Rautoma P
    Prog Clin Biol Res; 1989; 290():19-33. PubMed ID: 2726818
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of D-glucuronolactone and aldehyde dehydrogenase activities in the rat liver.
    Törrönen R; Marselos M
    Med Biol; 1977 Apr; 55(2):95-100. PubMed ID: 194116
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of cytosolic aldehyde dehydrogenase from cyclophosphamide resistant L1210 cells.
    Russo JE; Hilton J
    Cancer Res; 1988 Jun; 48(11):2963-8. PubMed ID: 3365687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of glutathione transferase, glutathione transferase messenger RNA, and reduced nicotinamide adenine dinucleotide (phosphate):quinone reductase induction by 2(3)-tert-butyl-4-hydroxyanisole in mice.
    Benson AM; Hunkeler MJ; Morrow JF
    Cancer Res; 1984 Nov; 44(11):5256-61. PubMed ID: 6435866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prominent role of DT-diaphorase as a cellular mechanism reducing chromium(VI) and reverting its mutagenicity.
    De Flora S; Morelli A; Basso C; Romano M; Serra D; De Flora A
    Cancer Res; 1985 Jul; 45(7):3188-96. PubMed ID: 4005852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic metabolism of N-hydroxy-N-methyl-4-aminoazobenzene and other N-hydroxy arylamines to reactive sulfuric acid esters.
    Kadlubar FF; Miller JA; Miller EC
    Cancer Res; 1976 Jul; 36(7 PT 1):2350-9. PubMed ID: 819129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development, sex-related difference and hormonal regulation of acetohexamide reductase activities in rat liver and kidney.
    Imamura Y; Iwamoto K; Yanachi Y; Higuchi T; Otagiri M
    J Pharmacol Exp Ther; 1993 Jan; 264(1):166-71. PubMed ID: 8423525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of aldehyde dehydrogenase inhibitors on the ex vivo sensitivity of human multipotent and committed hematopoietic progenitor cells and malignant blood cells to oxazaphosphorines.
    Kohn FR; Landkamer GJ; Manthey CL; Ramsay NK; Sladek NE
    Cancer Res; 1987 Jun; 47(12):3180-5. PubMed ID: 3034402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic characterization of the catalysis of "activated" cyclophosphamide (4-hydroxycyclophosphamide/aldophosphamide) oxidation to carboxyphosphamide by mouse hepatic aldehyde dehydrogenases.
    Manthey CL; Sladek NE
    Biochem Pharmacol; 1988 Jul; 37(14):2781-90. PubMed ID: 3395357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human breast adenocarcinoma MCF-7/0 cells electroporated with cytosolic class 3 aldehyde dehydrogenases obtained from tumor cells and a normal tissue exhibit differential sensitivity to mafosfamide.
    Sreerama L; Sladek NE
    Drug Metab Dispos; 1995 Oct; 23(10):1080-4. PubMed ID: 8654195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings: Relationship between aldehyde oxidase activity and biological activity of cyclophosphamide.
    Tochino Y; Sugeno Y
    Jpn J Pharmacol; 1974; 24(0):s:81. PubMed ID: 4545635
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.