These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 17223344)
1. Alanine scanning mutational analysis of the ligand binding pocket of the human Vitamin D receptor. Yamamoto K; Choi M; Abe D; Shimizu M; Yamada S J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):282-5. PubMed ID: 17223344 [TBL] [Abstract][Full Text] [Related]
2. Ligand recognition by vitamin D receptor: total alanine scanning mutational analysis of the residues lining the ligand binding pocket of vitamin D receptor. Yamada S; Yamamoto K Curr Top Med Chem; 2006; 6(12):1255-65. PubMed ID: 16848739 [TBL] [Abstract][Full Text] [Related]
3. Vitamin D receptor: ligand recognition and allosteric network. Yamamoto K; Abe D; Yoshimoto N; Choi M; Yamagishi K; Tokiwa H; Shimizu M; Makishima M; Yamada S J Med Chem; 2006 Feb; 49(4):1313-24. PubMed ID: 16480267 [TBL] [Abstract][Full Text] [Related]
4. Interactions between 1alpha,25(OH)2D3 and residues in the ligand-binding pocket of the vitamin D receptor: a correlated fragment molecular orbital study. Yamagishi K; Tokiwa H; Makishima M; Yamada S J Steroid Biochem Mol Biol; 2010 Jul; 121(1-2):63-7. PubMed ID: 20236613 [TBL] [Abstract][Full Text] [Related]
5. The importance of the putative helices 4 and 5 of human vitamin D(3) receptor for conformation and ligand binding. Väisänen S; Duchier C; Rouvinen J; Mäenpää PH Biochem Biophys Res Commun; 1999 Oct; 264(2):478-82. PubMed ID: 10529388 [TBL] [Abstract][Full Text] [Related]
6. Interaction between vitamin D receptor and vitamin D ligands: two-dimensional alanine scanning mutational analysis. Choi M; Yamamoto K; Itoh T; Makishima M; Mangelsdorf DJ; Moras D; DeLuca HF; Yamada S Chem Biol; 2003 Mar; 10(3):261-70. PubMed ID: 12670540 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional modeling of and ligand docking to vitamin D receptor ligand binding domain. Yamamoto K; Masuno H; Choi M; Nakashima K; Taga T; Ooizumi H; Umesono K; Sicinska W; VanHooke J; DeLuca HF; Yamada S Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1467-72. PubMed ID: 10677485 [TBL] [Abstract][Full Text] [Related]
8. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Vanhooke JL; Benning MM; Bauer CB; Pike JW; DeLuca HF Biochemistry; 2004 Apr; 43(14):4101-10. PubMed ID: 15065852 [TBL] [Abstract][Full Text] [Related]
9. The role of residue C410 on activation of the human vitamin D receptor by various ligands. Castillo HS; Ousley AM; Duraj-Thatte A; Lindstrom KN; Patel DD; Bommarius AS; Azizi B J Steroid Biochem Mol Biol; 2012 Jan; 128(1-2):76-86. PubMed ID: 21884792 [TBL] [Abstract][Full Text] [Related]
10. 22-Alkyl-20-epi-1alpha,25-dihydroxyvitamin D3 compounds of superagonistic activity: syntheses, biological activities and interaction with the receptor. Yamamoto K; Inaba Y; Yoshimoto N; Choi M; DeLuca HF; Yamada S J Med Chem; 2007 Mar; 50(5):932-9. PubMed ID: 17298045 [TBL] [Abstract][Full Text] [Related]
11. Adaptability of the Vitamin D nuclear receptor to the synthetic ligand Gemini: remodelling the LBP with one side chain rotation. Ciesielski F; Rochel N; Moras D J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):235-42. PubMed ID: 17218092 [TBL] [Abstract][Full Text] [Related]
12. The unique tryptophan residue of the vitamin D receptor is critical for ligand binding and transcriptional activation. Solomon C; Macoritto M; Gao XL; White JH; Kremer R J Bone Miner Res; 2001 Jan; 16(1):39-45. PubMed ID: 11149488 [TBL] [Abstract][Full Text] [Related]
13. [Characterization of ligand-dependent transactivation regions of the human vitamin D receptor]. Nakajima S Nihon Rinsho; 1998 Jul; 56(7):1717-21. PubMed ID: 9702043 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the vitamin D nuclear receptor ligand binding domain in complex with a locked side chain analog of calcitriol. Rochel N; Hourai S; Pérez-García X; Rumbo A; Mourino A; Moras D Arch Biochem Biophys; 2007 Apr; 460(2):172-6. PubMed ID: 17346665 [TBL] [Abstract][Full Text] [Related]
15. Model of three-dimensional structure of vitamin D receptor and its binding mechanism with 1alpha,25-dihydroxyvitamin D(3). Rotkiewicz P; Sicinska W; Kolinski A; DeLuca HF Proteins; 2001 Aug; 44(3):188-99. PubMed ID: 11455592 [TBL] [Abstract][Full Text] [Related]
16. Conservative mutageneic perturbations of amino acids connecting helix 12 in the 1alpha,25(OH)2-D3 receptor (VDR) to the ligand cause significant transactivational effects. Bula CM; Bishop JE; Norman AW J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):286-92. PubMed ID: 17368178 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of hereditary vitamin D-resistant rickets--associated mutant H305Q of vitamin D nuclear receptor bound to its natural ligand. Rochel N; Hourai S; Moras D J Steroid Biochem Mol Biol; 2010 Jul; 121(1-2):84-7. PubMed ID: 20403435 [TBL] [Abstract][Full Text] [Related]
18. A unique insertion/substitution in helix H1 of the vitamin D receptor ligand binding domain in a patient with hereditary 1,25-dihydroxyvitamin D-resistant rickets. Malloy PJ; Xu R; Cattani A; Reyes mL; Feldman D J Bone Miner Res; 2004 Jun; 19(6):1018-24. PubMed ID: 15190891 [TBL] [Abstract][Full Text] [Related]
19. Putative helices 3 and 5 of the human vitamin D3 receptor are important for the binding of calcitriol. Väisänen S; Rouvinen J; Mäenpää PH FEBS Lett; 1998 Nov; 440(1-2):203-7. PubMed ID: 9862455 [TBL] [Abstract][Full Text] [Related]
20. Structural evaluation of the agonistic action of a vitamin D analog with two side chains binding to the nuclear vitamin D receptor. Väisänen S; Peräkylä M; Kärkkäinen JI; Uskokovic MR; Carlberg C Mol Pharmacol; 2003 Jun; 63(6):1230-7. PubMed ID: 12761332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]