BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17223400)

  • 21. In vivo osseointegration of nano-designed composite coatings on titanium implants.
    Facca S; Lahiri D; Fioretti F; Messadeq N; Mainard D; Benkirane-Jessel N; Agarwal A
    ACS Nano; 2011 Jun; 5(6):4790-9. PubMed ID: 21591801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo.
    Chen QZ; Wong CT; Lu WW; Cheung KM; Leong JC; Luk KD
    Biomaterials; 2004 Aug; 25(18):4243-54. PubMed ID: 15046914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting.
    Chris Arts JJ; Verdonschot N; Schreurs BW; Buma P
    Biomaterials; 2006 Mar; 27(7):1110-8. PubMed ID: 16098583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics.
    Draenert M; Draenert A; Draenert K
    Microsc Res Tech; 2013 Apr; 76(4):370-80. PubMed ID: 23390042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heparin modification of calcium phosphate bone cements for VEGF functionalization.
    Lode A; Reinstorf A; Bernhardt A; Wolf-Brandstetter C; König U; Gelinsky M
    J Biomed Mater Res A; 2008 Sep; 86(3):749-59. PubMed ID: 18041720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defect model.
    Walsh WR; Chapman-Sheath PJ; Cain S; Debes J; Bruce WJ; Svehla MJ; Gillies RM
    J Orthop Res; 2003 Jul; 21(4):655-61. PubMed ID: 12798065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses--an experimental study in rabbits.
    Bitschnau A; Alt V; Böhner F; Heerich KE; Margesin E; Hartmann S; Sewing A; Meyer C; Wenisch S; Schnettler R
    J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):66-74. PubMed ID: 18615683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histomorphometric evaluation of the effect of hyperbaric oxygen treatment on healing around hydroxyapatite implants in irradiated rat bone.
    Chen X; Matsui Y; Ohno K; Michi K
    Int J Oral Maxillofac Implants; 1999; 14(1):61-8. PubMed ID: 10074753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo.
    Wong CT; Chen QZ; Lu WW; Leong JC; Chan WK; Cheung KM; Luk KD
    J Biomed Mater Res A; 2004 Sep; 70(3):428-35. PubMed ID: 15293316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxyapatite impregnated bone cement: in vitro and in vivo studies.
    Kwon SY; Kim YS; Woo YK; Kim SS; Park JB
    Biomed Mater Eng; 1997; 7(2):129-40. PubMed ID: 9262826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite.
    Itokawa H; Hiraide T; Moriya M; Fujimoto M; Nagashima G; Suzuki R; Fujimoto T
    Biomaterials; 2007 Nov; 28(33):4922-7. PubMed ID: 17707904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study of the regional distribution of bone formed around hydroxyapatite implants in the tibiae of streptozotocin-induced diabetic rats using multiple fluorescent labeling and confocal laser scanning microscopy.
    Iyama S; Takeshita F; Ayukawa Y; Kido MA; Suetsugu T; Tanaka T
    J Periodontol; 1997 Dec; 68(12):1169-75. PubMed ID: 9444591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteoconductive modifications of Ti-implants in a goat defect model: characterization of bone growth with SR muCT and histology.
    Bernhardt R; van den Dolder J; Bierbaum S; Beutner R; Scharnweber D; Jansen J; Beckmann F; Worch H
    Biomaterials; 2005 Jun; 26(16):3009-19. PubMed ID: 15603796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteoconduction at porous hydroxyapatite with various pore configurations.
    Chang BS; Lee CK; Hong KS; Youn HJ; Ryu HS; Chung SS; Park KW
    Biomaterials; 2000 Jun; 21(12):1291-8. PubMed ID: 10811311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.
    Choy MT; Tang CY; Chen L; Wong CT; Tsui CP
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():746-56. PubMed ID: 25063176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction of bone to HA, carbonate-HA, hydroxyapatite + calcium orthophosphate and to hydroxyapatite + calcium ortho- and pyrophosphate.
    Nordström EG; Niemi L; Miettinen J
    Biomed Mater Eng; 1992; 2(3):115-21. PubMed ID: 1333868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymer--calcium phosphate cement composites for bone substitutes.
    Mickiewicz RA; Mayes AM; Knaack D
    J Biomed Mater Res; 2002 Sep; 61(4):581-92. PubMed ID: 12115448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation.
    Fu K; Xu Q; Czernuszka J; Triffitt JT; Xia Z
    Biomed Mater; 2013 Dec; 8(6):065007. PubMed ID: 24288015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.