BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 1722350)

  • 21. cAMP-stimulated ion currents in Xenopus oocytes expressing CFTR cRNA.
    Cunningham SA; Worrell RT; Benos DJ; Frizzell RA
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C783-8. PubMed ID: 1372482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutant (delta F508) cystic fibrosis transmembrane conductance regulator Cl- channel is functional when retained in endoplasmic reticulum of mammalian cells.
    Pasyk EA; Foskett JK
    J Biol Chem; 1995 May; 270(21):12347-50. PubMed ID: 7539001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of the cystic fibrosis transmembrane conductance regulator by alphaG(i) and RGS proteins.
    Schreiber R; Kindle P; Benzing T; Walz G; Kunzelmann K
    Biochem Biophys Res Commun; 2001 Mar; 281(4):917-23. PubMed ID: 11237748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein kinase C activates chloride conductance in C127 cells stably expressing the cystic fibrosis gene.
    Dechecchi MC; Tamanini A; Berton G; Cabrini G
    J Biol Chem; 1993 May; 268(15):11321-5. PubMed ID: 7684379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state.
    Wilkinson DJ; Mansoura MK; Watson PY; Smit LS; Collins FS; Dawson DC
    J Gen Physiol; 1996 Jan; 107(1):103-19. PubMed ID: 8741733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radiotracer studies of cystic fibrosis transmembrane conductance regulator expressed in Xenopus oocytes.
    Ohrui T; Skach W; Thompson M; Matsumoto-Pon J; Calayag C; Widdicombe JH
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1586-93. PubMed ID: 7517633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular basis of defective anion transport in L cells expressing recombinant forms of CFTR.
    Yang Y; Devor DC; Engelhardt JF; Ernst SA; Strong TV; Collins FS; Cohn JA; Frizzell RA; Wilson JM
    Hum Mol Genet; 1993 Aug; 2(8):1253-61. PubMed ID: 7691345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR.
    Rubenstein RC; Egan ME; Zeitlin PL
    J Clin Invest; 1997 Nov; 100(10):2457-65. PubMed ID: 9366560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GTP-binding proteins inhibit cAMP activation of chloride channels in cystic fibrosis airway epithelial cells.
    Schwiebert EM; Kizer N; Gruenert DC; Stanton BA
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10623-7. PubMed ID: 1279687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells.
    Rich DP; Anderson MP; Gregory RJ; Cheng SH; Paul S; Jefferson DM; McCann JD; Klinger KW; Smith AE; Welsh MJ
    Nature; 1990 Sep; 347(6291):358-63. PubMed ID: 1699126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein.
    Brown CR; Hong-Brown LQ; Biwersi J; Verkman AS; Welch WJ
    Cell Stress Chaperones; 1996 Jun; 1(2):117-25. PubMed ID: 9222597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delta F508-CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines.
    Haws CM; Nepomuceno IB; Krouse ME; Wakelee H; Law T; Xia Y; Nguyen H; Wine JJ
    Am J Physiol; 1996 May; 270(5 Pt 1):C1544-55. PubMed ID: 8967457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein.
    Ko YH; Thomas PJ; Delannoy MR; Pedersen PL
    J Biol Chem; 1993 Nov; 268(32):24330-8. PubMed ID: 7693699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding.
    Logan J; Hiestand D; Daram P; Huang Z; Muccio DD; Hartman J; Haley B; Cook WJ; Sorscher EJ
    J Clin Invest; 1994 Jul; 94(1):228-36. PubMed ID: 7518829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of deleting the R domain on CFTR-generated chloride channels.
    Rich DP; Gregory RJ; Anderson MP; Manavalan P; Smith AE; Welsh MJ
    Science; 1991 Jul; 253(5016):205-7. PubMed ID: 1712985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of cAMP-activated chloride currents by expression of CFTR.
    Anderson MP; Rich DP; Gregory RJ; Smith AE; Welsh MJ
    Science; 1991 Feb; 251(4994):679-82. PubMed ID: 1704151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-Acetyl-L-cysteine and its derivatives activate a Cl- conductance in epithelial cells.
    Köttgen M; Busch AE; Hug MJ; Greger R; Kunzelmann K
    Pflugers Arch; 1996 Feb; 431(4):549-55. PubMed ID: 8596698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel natural product compound enhances cAMP-regulated chloride conductance of cells expressing CFTR[delta]F508.
    deCarvalho AC; Ndi CP; Tsopmo A; Tane P; Ayafor J; Connolly JD; Teem JL
    Mol Med; 2002 Feb; 8(2):75-87. PubMed ID: 12080183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Possible regulation of CFTR-chloride channels by membrane-bound phosphatases in pancreatic duct cells.
    Becq F; Fanjul M; Merten M; Figarella C; Hollande E; Gola M
    FEBS Lett; 1993 Aug; 327(3):337-42. PubMed ID: 7688697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.