These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 17224228)
1. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228 [TBL] [Abstract][Full Text] [Related]
2. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
3. Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Lettens S; Vandecasteele B; De Vos B; Vansteenkiste D; Verschelde P Sci Total Environ; 2011 May; 409(11):2306-16. PubMed ID: 21420720 [TBL] [Abstract][Full Text] [Related]
4. Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil. Lepp NW; Madejón P J Environ Qual; 2007; 36(4):1123-31. PubMed ID: 17596620 [TBL] [Abstract][Full Text] [Related]
5. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Vandecasteele B; Meers E; Vervaeke P; De Vos B; Quataert P; Tack FM Chemosphere; 2005 Feb; 58(8):995-1002. PubMed ID: 15664607 [TBL] [Abstract][Full Text] [Related]
6. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments. Vandecasteele B; Laing GD; Quataert P; Tack FM Sci Total Environ; 2005 Apr; 341(1-3):251-63. PubMed ID: 15833256 [TBL] [Abstract][Full Text] [Related]
7. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
8. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374 [TBL] [Abstract][Full Text] [Related]
9. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
10. Phytoextraction of risk elements by willow and poplar trees. Kacálková L; Tlustoš P; Száková J Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931 [TBL] [Abstract][Full Text] [Related]
11. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Vandecasteele B; Quataert P; Genouw G; Lettens S; Tack FM Sci Total Environ; 2009 Oct; 407(20):5289-97. PubMed ID: 19619889 [TBL] [Abstract][Full Text] [Related]
12. Zinc accumulation in plant species indigenous to a Portuguese polluted site: relation with soil contamination. Marques AP; Rangel AO; Castro PM J Environ Qual; 2007; 36(3):646-53. PubMed ID: 17412901 [TBL] [Abstract][Full Text] [Related]
13. Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Domínguez MT; Madrid F; Marañón T; Murillo JM Chemosphere; 2009 Jul; 76(4):480-6. PubMed ID: 19375778 [TBL] [Abstract][Full Text] [Related]
14. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650 [TBL] [Abstract][Full Text] [Related]
15. Assessment of willow (Salix sp.) as a woody heavy metal accumulator: field survey and in vivo X-ray analyses. Harada E; Hokura A; Nakai I; Terada Y; Baba K; Yazaki K; Shiono M; Mizuno N; Mizuno T Metallomics; 2011 Dec; 3(12):1340-6. PubMed ID: 21969005 [TBL] [Abstract][Full Text] [Related]
16. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Li JT; Liao B; Dai ZY; Zhu R; Shu WS Chemosphere; 2009 Aug; 76(9):1233-9. PubMed ID: 19541343 [TBL] [Abstract][Full Text] [Related]
17. Tree species effect on the redistribution of soil metals. Mertens J; Van Nevel L; De Schrijver A; Piesschaert F; Oosterbaan A; Tack FM; Verheyen K Environ Pollut; 2007 Sep; 149(2):173-81. PubMed ID: 17360090 [TBL] [Abstract][Full Text] [Related]
18. A phytogeochemical study of the Trás-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Díez Lázaro J; Kidd PS; Monterroso Martínez C Sci Total Environ; 2006 Feb; 354(2-3):265-77. PubMed ID: 16399000 [TBL] [Abstract][Full Text] [Related]
19. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment. Lehmann C; Rebele F Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982 [TBL] [Abstract][Full Text] [Related]
20. Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution. Krpata D; Fitz W; Peintner U; Langer I; Schweiger P Environ Pollut; 2009 Jan; 157(1):280-6. PubMed ID: 18706745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]