BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1722424)

  • 1. How does ppGpp affect translational accuracy in the stringent response?
    Rojas AM; Ehrenberg M
    Biochimie; 1991 May; 73(5):599-605. PubMed ID: 1722424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elongation factor Tu.guanosine 3'-diphosphate 5'-diphosphate complex increases the fidelity of proofreading in protein biosynthesis: mechanism for reducing translational errors introduced by amino acid starvation.
    Dix DB; Thompson RC
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2027-31. PubMed ID: 3515344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ppGpp on the accuracy of protein biosynthesis.
    Dix DB; Thompson RC; Mackow ER; Chang FN
    Arch Biochem Biophys; 1983 May; 223(1):319-24. PubMed ID: 6344795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template-independent synthesis of guanosine tetra- and pentaphosphates on ribosomes.
    Belitsina NV; Klyachko EV; Shakulov RS
    FEBS Lett; 1983 Oct; 162(1):39-42. PubMed ID: 6352335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis.
    Rojas AM; Ehrenberg M; Andersson SG; Kurland CG
    Mol Gen Genet; 1984; 197(1):36-45. PubMed ID: 6392824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro analysis of translational rate and accuracy with an unmodified tRNA.
    Harrington KM; Nazarenko IA; Dix DB; Thompson RC; Uhlenbeck OC
    Biochemistry; 1993 Aug; 32(30):7617-22. PubMed ID: 7688564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the initiating ribosome copes with ppGpp to translate mRNAs.
    Vinogradova DS; Zegarra V; Maksimova E; Nakamoto JA; Kasatsky P; Paleskava A; Konevega AL; Milón P
    PLoS Biol; 2020 Jan; 18(1):e3000593. PubMed ID: 31995552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The suppression of defective translation by ppGpp and its role in the stringent response.
    O'Farrell PH
    Cell; 1978 Jul; 14(3):545-57. PubMed ID: 357011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic suppression of translational errors by (p)ppGpp.
    Wagner EG; Ehrenberg M; Kurland CG
    Mol Gen Genet; 1982; 185(2):269-74. PubMed ID: 7045583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High concentrations of ppGpp decrease the RNA chain growth rate. Implications for protein synthesis and translational fidelity during amino acid starvation in Escherichia coli.
    Sørensen MA; Jensen KF; Pedersen S
    J Mol Biol; 1994 Feb; 236(2):441-54. PubMed ID: 7508988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of erythromycin and virginiamycin S on polypeptide synthesis in cell-free systems.
    Chinali G; Nyssen E; Di Giambattista M; Cocito C
    Biochim Biophys Acta; 1988 Nov; 951(1):42-52. PubMed ID: 3142522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.
    Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A
    EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.
    Pape T; Wintermeyer W; Rodnina M
    EMBO J; 1999 Jul; 18(13):3800-7. PubMed ID: 10393195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu.
    Hunter SE; Spremulli LL
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):173-82. PubMed ID: 15158725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition by elongation factor EF G of aminoacyl-tRNA binding to ribosomes.
    Cabrer B; Vázquez D; Modolell J
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):733-6. PubMed ID: 4551985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational activities of EF-Tu [G222D] which cannot be reconciled with the classical scheme of the polypeptide chain elongation cycle.
    Talens A; Boon K; Kraal B; Bosch L
    Biochem Biophys Res Commun; 1996 Aug; 225(3):961-7. PubMed ID: 8780718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of the mechanism for the stringent factor RelA.
    Wendrich TM; Blaha G; Wilson DN; Marahiel MA; Nierhaus KH
    Mol Cell; 2002 Oct; 10(4):779-88. PubMed ID: 12419222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli stringent factor binds to ribosomes at a site different from that of elongation factor Tu or G.
    Richter D; Nowak P; Kleinert U
    Biochemistry; 1975 Oct; 14(20):4414-20. PubMed ID: 1100104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.