BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17224622)

  • 1. Autophagy in the invading pathogen.
    Palmer GE
    Autophagy; 2007; 3(3):251-3. PubMed ID: 17224622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy in the pathogen Candida albicans.
    Palmer GE; Kelly MN; Sturtevant JE
    Microbiology (Reading); 2007 Jan; 153(Pt 1):51-8. PubMed ID: 17185534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The malfunction of peroxisome has an impact on the oxidative stress sensitivity in Candida albicans.
    Chen Y; Yu Q; Wang H; Dong Y; Jia C; Zhang B; Xiao C; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2016 Oct; 95():1-12. PubMed ID: 27473887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of Atg11 in non-selective autophagy and selective autophagy of Candida albicans.
    Cui L; Zhao H; Yin Y; Liang C; Mao X; Liu Y; Yu Q; Li M
    Biochem Biophys Res Commun; 2019 Sep; 516(4):1152-1158. PubMed ID: 31284951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis.
    Navarathna DH; Pathirana RU; Lionakis MS; Nickerson KW; Roberts DD
    PLoS One; 2016; 11(10):e0164449. PubMed ID: 27727302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the inositol polyphosphate kinase Vip1 in autophagy and pathogenesis in
    Ma T; Yu Q; Ma C; Mao X; Liu Y; Peng X; Li M
    Future Microbiol; 2020 Sep; 15():1363-1377. PubMed ID: 33085539
    [No Abstract]   [Full Text] [Related]  

  • 7. Autophagy in Candida albicans.
    Palmer GE
    Methods Enzymol; 2008; 451():311-22. PubMed ID: 19185729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida albicans VPS4 contributes differentially to epithelial and mucosal pathogenesis.
    Rane HS; Hardison S; Botelho C; Bernardo SM; Wormley F; Lee SA
    Virulence; 2014; 5(8):810-8. PubMed ID: 25483774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Candida albicans vacuole is required for differentiation and efficient macrophage killing.
    Palmer GE; Kelly MN; Sturtevant JE
    Eukaryot Cell; 2005 Oct; 4(10):1677-86. PubMed ID: 16215175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans.
    Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavodoxin-Like Proteins Protect Candida albicans from Oxidative Stress and Promote Virulence.
    Li L; Naseem S; Sharma S; Konopka JB
    PLoS Pathog; 2015 Sep; 11(9):e1005147. PubMed ID: 26325183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of VMA5 to vacuolar function, stress response, ion homeostasis and autophagy in Candida albicans.
    Zhang K; Jia C; Yu Q; Xiao C; Dong Y; Zhang M; Zhang D; Zhao Q; Zhang B; Li M
    Future Microbiol; 2017 Oct; 12():1147-1166. PubMed ID: 28879785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ccz1 mediates the autophagic clearance of damaged mitochondria in response to oxidative stress in Candida albicans.
    Dong Y; Yu Q; Chen Y; Xu N; Zhao Q; Jia C; Zhang B; Zhang K; Zhang B; Xing L; Li M
    Int J Biochem Cell Biol; 2015 Dec; 69():41-51. PubMed ID: 26471407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida albicans mutant construction and characterization of selected virulence determinants.
    Motaung TE; Albertyn J; Pohl CH; Köhler G
    J Microbiol Methods; 2015 Aug; 115():153-65. PubMed ID: 26073905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional response of Candida albicans upon internalization by macrophages.
    Lorenz MC; Bender JA; Fink GR
    Eukaryot Cell; 2004 Oct; 3(5):1076-87. PubMed ID: 15470236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.
    Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ
    Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.
    Bahn YS; Sundstrom P
    J Bacteriol; 2001 May; 183(10):3211-23. PubMed ID: 11325951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential virulence of Candida albicans and C. dubliniensis: A role for Tor1 kinase?
    Sullivan DJ; Moran GP
    Virulence; 2011; 2(1):77-81. PubMed ID: 21289475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans.
    McBride AE
    Curr Genet; 2017 Dec; 63(6):989-995. PubMed ID: 28512683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protein secretory pathway of Candida albicans.
    Fonzi WA
    Mycoses; 2009 Jul; 52(4):291-303. PubMed ID: 19207839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.