BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17224764)

  • 1. Prospective evaluation of factors associated with post-LASIK corneal birefringence with scanning laser polarimetry.
    Shoji T; Takahashi H; Park M; Okazaki K; Tanito M; Chihara E
    J Glaucoma; 2007 Jan; 16(1):137-45. PubMed ID: 17224764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal changes after laser in situ keratomileusis: measurement of corneal polarization magnitude and axis.
    Angeles R; Abunto T; Bowd C; Zangwill LM; Schanzlin DJ; Weinreb RN
    Am J Ophthalmol; 2004 Apr; 137(4):697-703. PubMed ID: 15059709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal nerve fiber layer measurements do not change after LASIK for high myopia as measured by scanning laser polarimetry with custom compensation.
    Choplin NT; Schallhorn SC; Sinai M; Tanzer D; Tidwell JL; Zhou Q
    Ophthalmology; 2005 Jan; 112(1):92-7. PubMed ID: 15629826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corneal birefringence changes after laser assisted in situ keratomileusis and their influence on retinal nerve fibre layer thickness measurement by means of scanning laser polarimetry.
    Centofanti M; Oddone F; Parravano M; Gualdi L; Bucci MG; Manni G
    Br J Ophthalmol; 2005 Jun; 89(6):689-93. PubMed ID: 15923503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of nerve fiber layer thickness before and after laser in situ keratomileusis using scanning laser polarimetry with variable corneal compensation.
    Halkiadakis I; Anglionto L; Ferensowicz M; Triebwasser RW; van Westenbrugge JA; Gimbel HV
    J Cataract Refract Surg; 2005 May; 31(5):1035-41. PubMed ID: 15975475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry.
    Weinreb RN; Bowd C; Greenfield DS; Zangwill LM
    Arch Ophthalmol; 2002 Jul; 120(7):901-6. PubMed ID: 12096960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal measurement variability of corneal birefringence and retinal nerve fiber layer thickness in scanning laser polarimetry with variable corneal compensation.
    Mai TA; Lemij HG
    Arch Ophthalmol; 2008 Oct; 126(10):1359-64. PubMed ID: 18852413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation.
    Mai TA; Reus NJ; Lemij HG
    Ophthalmology; 2007 Nov; 114(11):1988-93. PubMed ID: 17459481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normative retardation data corrected for the corneal polarization axis with scanning laser polarimetry.
    Greenfield DS; Knighton RW; Feuer WJ; Schiffman JC
    Ophthalmic Surg Lasers Imaging; 2003; 34(2):165-71. PubMed ID: 12665235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal hysteresis using the Reichert ocular response analyser: findings pre- and post-LASIK and LASEK.
    Kirwan C; O'Keefe M
    Acta Ophthalmol; 2008 Mar; 86(2):215-8. PubMed ID: 17888086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the retinal nerve fiber layer of the normal and glaucomatous monkey with scanning laser polarimetry.
    Weinreb RN; Bowd C; Zangwill LM
    Trans Am Ophthalmol Soc; 2002; 100():161-6; discussion 166-7. PubMed ID: 12545690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes.
    Sehi M; Ume S; Greenfield DS
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2099-104. PubMed ID: 17460267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of enhanced corneal compensation in scanning laser polarimetry: comparison with variable corneal compensation on human eyes undergoing LASIK.
    Tóth M; Holló G
    J Glaucoma; 2006 Feb; 15(1):53-9. PubMed ID: 16378019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of corneal curvature change after mechanical laser in situ keratomileusis flap creation and femtosecond laser flap creation.
    Ortiz D; Alió JL; Piñero D
    J Cataract Refract Surg; 2008 Feb; 34(2):238-42. PubMed ID: 18242446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical characteristics of eyes demonstrating atypical patterns in scanning laser polarimetry.
    Orlev A; Horani A; Rapson Y; Cohen MJ; Blumenthal EZ
    Eye (Lond); 2008 Nov; 22(11):1378-83. PubMed ID: 17627289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in scanning laser polarimetry before and after laser capsulotomy for posterior capsular opacification.
    Brittain CJ; Fong KC; Hull CC; Gillespie IH
    J Glaucoma; 2007 Jan; 16(1):112-6. PubMed ID: 17224760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease.
    Bagga H; Greenfield DS; Knighton RW
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):1969-76. PubMed ID: 12714631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing glaucomatous optic neuropathy in primary open angle and primary angle closure glaucoma eyes by scanning laser polarimetry-variable corneal compensation.
    Chen HY; Huang ML; Tsai YY; Hung PT; Lin EJ
    J Glaucoma; 2008 Mar; 17(2):105-10. PubMed ID: 18344755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry.
    Mai TA; Reus NJ; Lemij HG
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1651-8. PubMed ID: 17389496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal nerve fiber layer measurement repeatability in scanning laser polarimetry with enhanced corneal compensation.
    Mai TA; Reus NJ; Lemij HG
    J Glaucoma; 2008; 17(4):269-74. PubMed ID: 18552611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.