These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 17225031)

  • 21. Changes in motor system function and recovery after stroke.
    Cramer SC
    Restor Neurol Neurosci; 2004; 22(3-5):231-8. PubMed ID: 15502267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavioral improvements and brain functional alterations by motor imagery training.
    Zhang H; Xu L; Wang S; Xie B; Guo J; Long Z; Yao L
    Brain Res; 2011 Aug; 1407():38-46. PubMed ID: 21764038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volition and imagery in neurorehabilitation.
    Lotze M; Cohen LG
    Cogn Behav Neurol; 2006 Sep; 19(3):135-40. PubMed ID: 16957491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural substrates of cognitive load changes during a motor task in subjects with stroke.
    Kimberley TJ; Lewis SM; Strand C; Rice BD; Hall S; Slivnik P
    J Neurol Phys Ther; 2008 Sep; 32(3):110-7. PubMed ID: 18978666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the performance of motor imagery in stroke patients: multivariate pattern analysis of functional MRI data.
    Park CH; Chang WH; Lee M; Kwon GH; Kim L; Kim ST; Kim YH
    Neurorehabil Neural Repair; 2015; 29(3):247-54. PubMed ID: 25055835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corticospinal excitability during observation and imagery of simple and complex hand tasks: implications for motor rehabilitation.
    Roosink M; Zijdewind I
    Behav Brain Res; 2010 Nov; 213(1):35-41. PubMed ID: 20433871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of observation combined with motor imagery of a skilled hand-motor task on motor cortical excitability: difference between novice and expert.
    Tsukazaki I; Uehara K; Morishita T; Ninomiya M; Funase K
    Neurosci Lett; 2012 Jun; 518(2):96-100. PubMed ID: 22580208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex.
    Takemi M; Masakado Y; Liu M; Ushiba J
    J Neurophysiol; 2013 Sep; 110(5):1158-66. PubMed ID: 23761697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of technology-supported mental imagery in neurological rehabilitation: a research protocol.
    Morganti F; Gaggioli A; Castelnuovo G; Bulla D; Vettorello M; Riva G
    Cyberpsychol Behav; 2003 Aug; 6(4):421-7. PubMed ID: 14511455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliability of mental chronometry for assessing motor imagery ability after stroke.
    Malouin F; Richards CL; Durand A; Doyon J
    Arch Phys Med Rehabil; 2008 Feb; 89(2):311-9. PubMed ID: 18226656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parallel stages of learning and recovery of skilled reaching after motor cortex stroke: "oppositions" organize normal and compensatory movements.
    Gharbawie OA; Whishaw IQ
    Behav Brain Res; 2006 Dec; 175(2):249-62. PubMed ID: 17049628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor tele-rehabilitation in post-stroke patients.
    Piron L; Tonin P; Trivello E; Battistin L; Dam M
    Med Inform Internet Med; 2004 Jun; 29(2):119-25. PubMed ID: 15370992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mirror system and its role in social cognition.
    Rizzolatti G; Fabbri-Destro M
    Curr Opin Neurobiol; 2008 Apr; 18(2):179-84. PubMed ID: 18706501
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training.
    Bermúdez i Badia S; García Morgade A; Samaha H; Verschure PF
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):174-81. PubMed ID: 23204287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The potential for utilizing the "mirror neurone system" to enhance recovery of the severely affected upper limb early after stroke: a review and hypothesis.
    Pomeroy VM; Clark CA; Miller JS; Baron JC; Markus HS; Tallis RC
    Neurorehabil Neural Repair; 2005 Mar; 19(1):4-13. PubMed ID: 15673838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery of motor function after stroke.
    Brown JA
    Prog Brain Res; 2006; 157():223-8. PubMed ID: 17046674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulation through simulation? Motor imagery and functional reorganization in hemiplegic stroke patients.
    Johnson-Frey SH
    Brain Cogn; 2004 Jul; 55(2):328-31. PubMed ID: 15177807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional properties of brain areas associated with motor execution and imagery.
    Hanakawa T; Immisch I; Toma K; Dimyan MA; Van Gelderen P; Hallett M
    J Neurophysiol; 2003 Feb; 89(2):989-1002. PubMed ID: 12574475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.
    Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME
    Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.