BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 17225061)

  • 21. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein.
    Rodriguez-Granillo A; Crespo A; Estrin DA; Wittung-Stafshede P
    J Phys Chem B; 2010 Mar; 114(10):3698-706. PubMed ID: 20166696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution structure of the apo and copper(I)-loaded human metallochaperone HAH1.
    Anastassopoulou I; Banci L; Bertini I; Cantini F; Katsari E; Rosato A
    Biochemistry; 2004 Oct; 43(41):13046-53. PubMed ID: 15476398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular copper routing: the role of copper chaperones.
    Harrison MD; Jones CE; Solioz M; Dameron CT
    Trends Biochem Sci; 2000 Jan; 25(1):29-32. PubMed ID: 10637610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus.
    Chintalapati S; Al Kurdi R; van Scheltinga AC; Kühlbrandt W
    J Mol Biol; 2008 May; 378(3):581-95. PubMed ID: 18374940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition.
    Tottey S; Rondet SA; Borrelly GP; Robinson PJ; Rich PR; Robinson NJ
    J Biol Chem; 2002 Feb; 277(7):5490-7. PubMed ID: 11739376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lysine-60 in copper chaperone Atox1 plays an essential role in adduct formation with a target Wilson disease domain.
    Hussain F; Rodriguez-Granillo A; Wittung-Stafshede P
    J Am Chem Soc; 2009 Nov; 131(45):16371-3. PubMed ID: 19863064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATOX1: a novel copper-responsive transcription factor in mammals?
    Muller PA; Klomp LW
    Int J Biochem Cell Biol; 2009 Jun; 41(6):1233-6. PubMed ID: 18761103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2.
    Huffman DL; O'Halloran TV
    J Biol Chem; 2000 Jun; 275(25):18611-4. PubMed ID: 10764731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An NMR study of the interaction of the N-terminal cytoplasmic tail of the Wilson disease protein with copper(I)-HAH1.
    Banci L; Bertini I; Cantini F; Massagni C; Migliardi M; Rosato A
    J Biol Chem; 2009 Apr; 284(14):9354-60. PubMed ID: 19181666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF.
    Padilla-Benavides T; George Thompson AM; McEvoy MM; Argüello JM
    J Biol Chem; 2014 Jul; 289(30):20492-501. PubMed ID: 24917681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.
    Raimunda D; González-Guerrero M; Leeber BW; Argüello JM
    Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissecting the role of the N-terminal metal-binding domains in activating the yeast copper ATPase in vivo.
    Morin I; Gudin S; Mintz E; Cuillel M
    FEBS J; 2009 Aug; 276(16):4483-95. PubMed ID: 19678841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural insight into the distinct properties of copper transport by the Helicobacter pylori CopP protein.
    Park SJ; Jung YS; Kim JS; Seo MD; Lee BJ
    Proteins; 2008 May; 71(2):1007-19. PubMed ID: 18214986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper transfer to the N-terminal domain of the Wilson disease protein (ATP7B): X-ray absorption spectroscopy of reconstituted and chaperone-loaded metal binding domains and their interaction with exogenous ligands.
    Ralle M; Lutsenko S; Blackburn NJ
    J Inorg Biochem; 2004 May; 98(5):765-74. PubMed ID: 15134922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mechanisms of copper homeostasis.
    Camakaris J; Voskoboinik I; Mercer JF
    Biochem Biophys Res Commun; 1999 Aug; 261(2):225-32. PubMed ID: 10425169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 13C direct-detection biomolecular NMR spectroscopy in living cells.
    Bertini I; Felli IC; Gonnelli L; Kumar M V V; Pierattelli R
    Angew Chem Int Ed Engl; 2011 Mar; 50(10):2339-41. PubMed ID: 21351349
    [No Abstract]   [Full Text] [Related]  

  • 39. Copper chaperones in bacteria: association with copper-transporting ATPases.
    Jordan IK; Natale DA; Galperin MY
    Trends Biochem Sci; 2000 Oct; 25(10):480-1. PubMed ID: 11203382
    [No Abstract]   [Full Text] [Related]  

  • 40. A docking approach to the study of copper trafficking proteins; interaction between metallochaperones and soluble domains of copper ATPases.
    Arnesano F; Banci L; Bertini I; Bonvin AM
    Structure; 2004 Apr; 12(4):669-76. PubMed ID: 15062089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.